Physics at Photon Colliders Prof. Mayda M. Velasco Northwestern University

ICFA Mini-Workshop on Future gamma-gamma Collider

April 23-26, 2017 Tsinghua University Beijing China

Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV ⁽³⁾

- @LHC the Higgs is better detected in rare decays like $\gamma\gamma$ and ZZ \rightarrow 4L
 - Reflecting the power of Signal/Power

 \bullet

- Sensitivity of Higgs to fermions (g_F) comes from the gg to H production and dominated by the top quark
- See example for H to bb → we need to do this elsewhere like @γγC

RUN-2

The discovery of Higgs Boson has created as many questions as it has answer

- 1. Higgs boson mass (M_H) & decay width ($\Gamma_{\rm H}$)
- 2. Higgs boson quantum numbers J^{PC} and tensor structure
- 3. Higgs couplings to gauge bosons (g_V) and fermions (g_F)
- 4. Higgs potential Higgs self-coupling (λ)

The Standard Model Lagrangian - Higgs sector

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$

 $m_H = \sqrt{2}\mu = \sqrt{\lambda}v \ (v = \text{vacuum expectation value}, \ 246 \,\text{GeV})$

Are (1)-(3) measured precise enough @ LHC to be sensitive the relevant PBSM?

K. Cranmer

(4) What is the exact shape of the Higgs potential?

Examples of the M_{H} measurements/predictions before and after discovery

easurement [arXiv:1405.3827 sumement larXiv-1407 0558

110

120

130

140 M_a [GeV]

2.5

0.5

2 1.5

- provides critical test of SM if $\sigma(m_W) \leq 6$ MeV
- Huge challenge at LHC
- Recent ATLAS result: $\sigma(m_w) = 19 \text{ MeV}$
- m_w measurement is the bottleneck, where the experimental uncertainty is worse than the theoretical one
- \rightarrow We need to do this elsewhere like @ $\gamma\gamma$ C

LHC Data making clear the need for future machines Poorly measured

- Discovered the Higgs Boson @125 GeV
- Excluded Physics Beyond the Standard Model (PBSM) at relatively low masses:
 - < few TeV in many models
- Need to include Precision Electroweak measurements to have sensitivity to PBSM not accessible direct at the LHC

Already signs from new physics in the Higgs data by comparing M_{top} with M_{H} ?

- Dashed lines: Calculation of the regions of the (m_H,m_{top}) plane where the electroweak vacuum is stable, metastable or unstable, and yields the following estimate of the "tipping point" Λ_I, where λ goes negative
- The final result is an estimate:
 - $\log_{10} (\Lambda_{\rm I} / {\rm GeV}) = 9.4 \pm 1.1$

indicating to some experts that we are (probably) doomed, unless some new physics intervenes.

Based on what we have learned at the LHC

1. E_{ee} =160 GeV or $E_{\gamma\gamma} = M_H$

- We need a "low" energy $\gamma\gamma C$ to study the Higgs in more detailed
- Branching ratios not accessible with precisions at the the LHC (i.e. $H \rightarrow bb$) and precision measurements of those that loop induced (i.e. $H \rightarrow \gamma\gamma$)
- Look for new physics in the Higgs sector:
 - CP admixture
 - Flavor violating decays like H \rightarrow eµ, $\mu\tau$ and e\tau
 - Dark sector $H \rightarrow dark photons \rightarrow fermions$
- Precise measurements of W properties (m_W, $\Gamma_{\rm W}$ and W Branching fraction) using e- $\gamma \rightarrow W\nu$
- Precise measurements of $\sin^2\theta_W$ from $e^-e^- \rightarrow e^-e^-$
- 2. $E_{\gamma\gamma}$ above 2 x M_W to 2 x M_H, that is 200 to 300 GeV

First steps: as discussed in the past, $\gamma\gamma$ C as Higgs Factory and associated e⁻e⁻C and e⁻ γ C

What is special about $\gamma\gamma$ C?

#1: Higher sensitivity due to higher cross sections

10⁻²

10⁻³ 100 150 200 250 300 350 400

Mscalar, GeV

and ability to manipulate the photon beam polarization to produce J_z of $\gamma\gamma$ system is = 0 or 2

Example of Standard Model Processes

What is special about $\gamma\gamma$ C?

 #2: Unique role in understanding CP structure due to the possibility of having linearly polarized beams that allow us to have:

• Change polarization of *circularly polarized* photon beams ($\lambda = \pm 1$) as needed to measure asymmetries for J_z=0 produced from:

$$\lambda_{1,} \lambda_{2}$$
 = (+, +) and $\lambda_{1,} \lambda_{2}$ = (-, -)

What is special about $\gamma\gamma$ C?

• #2: Unique role in understanding CP structure due to the possibility of having linearly polarized beams that allow us to have:

We are still searching for the source of matter anti-matter asymmetry observed for visible matter in our universe; → therefore looking for new sources of CP is crucial !

What is special about $\gamma\gamma C$?

• #3: Special role in understanding Higgs mechanism due to larger cross sections and the fact that Higgs is produced as an resonance:

Physics Motivation of $\gamma\gamma$ C Higgs factory

- Important measurements that can only be done with high precision at the $\gamma\gamma$ C assuming at least 10,000/year
 - $\Gamma_{\gamma\gamma}$ to 2% (Model independent)
 - Results in a 13% on $\Gamma_{\rm Total}$
 - Results in a Y_{tt} of 4%
 - Measure CP mixing and violation to better than 1%
 - At higher energies Higgs self
 - coupling: λ_{hhh} to a few %

Practical motivation of yyC Higgs factory

- Development of compact γγC starting from e⁻e⁻ :
 - Based on already existing accelerator technology
 - Polarized and low energy e⁻ beam: $E_e = 80$ GeV and ($\lambda_e = 80\%$)
 - Cost of building and operation is lower than other machines (excluding laser... to be discussed here)
- Required laser technology is becoming available

Designs that will produce $\geq 10K$ Higgs/year (10⁷s)

- HFiTT: Higgs Factory in Tevatron Tunnel (Fermilab specific)
- SILC: SLC-ILC-Style $\gamma\gamma$ Higgs Factory (SLAC specific)
- SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons (Can be built elsewhere)
- CLICHÉ : CLIC Higgs Experiment
- Plus designed to come out of this meeting
- Detector and beam environment not more difficult than what we are experiencing at the LHC

3 machines in 1:
$$e^-e^-$$
, $e^-\gamma$, $\gamma\gamma$

Just for reference: Primary Parameters

Parameter	HFITT	Sapphire	SILC	CLICHE
cms e-e- Energy	160 GeV	160 GeV	160 GeV	160 Gev
Peak γγ Energy	126 GeV	128 GeV	130 GeV	128 GeV
Bunch charge	2e10	1e10	5e10	4e9
Bunches/train	1	1	1000	1690
Rep. rate	47.7 kHz	200 kHz	10 Hz	100 Hz
Power per beam	12.2 MW	25 MW	7 MW	9.6 MW
L_ee	3.2e34	2e34	1e34	4e34
L_gg (Εγγ > 0.6 Ecms)	5e33	3.5e33	2e33	3.5e33
CP from IP	1.2 mm	1 mm	4 mm	1 mm
Laser pulse energy	5 J	4 J	1.2 J	2 J
Total electric power< = 100 MW γ_{laser} : In all designs a laser pulses				aser pulses

35-50 fb⁻¹s⁻¹

 γ_{laser} : In all designs a laser pulses of a several *Joules* with a λ ~350nm (3.53 eV) for E_{e-} ~ 80 GeV Idea of γγC Based on Compton Backscattering (see Telnov's talk)

With circularly polarized γ_{laser} (P_C= ±1) & polarized e- ($\lambda_e = \mp 1$)

 σ (γγ → H) >200 fb

$$h^0
ightarrow b ar{b} ~{
m and}~ h^0
ightarrow \gamma \gamma$$
 hep-ex/0110056

γγC Higgs-factory

Table 1: Precision of measurements to be performed at HFiTT after 5 years of data taking						
Measurement	Precision after 5 years of operation	Comment				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to \overline{b}b)$	0.01					
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to WW^*)$	0.03	Leptonic decays only				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to \gamma\gamma)$	0.12					
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to ZZ^*)$	0.06	One Leptonic and one hadronic decay				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to Z\gamma)$	0.20	Leptonic and hadronic decays for Z				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to \tau^{\dagger} \tau^{-})$	-	Work in progress				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to \bar{c}c)$	-	Work in progress				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to gg)$	-	Work in progress				
$\Gamma_{\gamma\gamma} \times \operatorname{Br}(h \to \mu^+ \mu^-)$	0.38					
Γ _{γγ}	0.02	Using Br $(h \rightarrow \overline{b}b)$ as input				
Γ_{total}	0.13	Using Br $(h \rightarrow \overline{b}b)$ as input				
H _{tt} Yukawa coupling	0.04	Indirect from $\Gamma_{\gamma\gamma}$				
Mass measurement	60 MeV	From $h \rightarrow \gamma \gamma$				
CP Asymmetry using $h \rightarrow \overline{b}b$	<0.01					
CP Asymmetry using $h \rightarrow WW^*$	0.04					

$\gamma\gamma$ C Higgs-factory to Study CP Violation in Detail

 (ζ_3, ζ_1) are the degrees of linear polarization

 ζ_2 is the degree of circular polarization

In s-channel production of Higgs:

$$\overline{\left|\mathcal{M}^{H_{i}}\right|^{2}} = \overline{\left|\mathcal{M}^{H_{i}}\right|^{2}_{0}} \left\{ \left[1 + \zeta_{2}\tilde{\zeta}_{2}\right] + \mathcal{A}_{1}\left[\zeta_{2} + \tilde{\zeta}_{2}\right] + \mathcal{A}_{2}\left[\zeta_{1}\tilde{\zeta}_{3} + \zeta_{3}\tilde{\zeta}_{1}\right] - \mathcal{A}_{3}\left[\zeta_{1}\tilde{\zeta}_{1} - \zeta_{3}\tilde{\zeta}_{3}\right] \right\}$$

== 0 if CP is conserved
$$== +1 (-1) \text{ for CP is conserved for}$$

$$A CP-Even (CP-Odd) \text{ Higgs}$$

If $\mathcal{A}_1 \neq 0$, $\mathcal{A}_2 \neq 0$ and/or $|\mathcal{A}_3| < 1$, the Higgs is a mixture of CP-Even and CP-Odd states

Possible to search for CP violation in

 $\gamma\gamma \rightarrow$ H \rightarrow fermions without having to measure their polarization

 M_{W} from $e^{-}\gamma \rightarrow W^{-}v$

Mass measurement from W → hadron events scan <u>can provide a error < 5 MeV</u>

$$e^-\gamma \rightarrow W^-\nu vs$$

 $\gamma \gamma \rightarrow W^+W^-$

Mass measurement and width might be event better to work at $\gamma\gamma \rightarrow$ WW threshold

Comment: Interests in W branching fraction to improve tests of lepton unversality

Winter 2005 - LEP Preliminary W Leptonic Branching Ratios W Hadronic Branching Ratio 23/02/2005 23/02/2005 ALEPH 10.78 ± 0.29 DELPHI 10.55 ± 0.34 L3 10.78 ± 0.32 OPAL 10.40 ± 0.35 ALEPH 67.13 ± 0.40 - Lepton LEP W→ev 10.65 ± 0.17 DELPHI 67.45 ± 0.48 ALEPH 10.87 ± 0.26 universality L3 67.50 ± 0.52 DELPHI 10.65 ± 0.27 10.03 ± 0.31 L3 tested at OPAL 67.91 ± 0.61 **OPAL** 10.61 ± 0.35 LEP W $\rightarrow \mu \nu$ 10.59 ± 0.15 1% level LEP ALEPH 67.48 ± 0.28 11.25 ± 0.38 DELPHI 11.46 ± 0.43 χ^2 /ndf = 15.4 / 11 L3 11.89 ± 0.45 **OPAL** 11.18 ± 0.48 $-\tau BR \sim 2.7 \sigma$ LEP $W \rightarrow \tau v$ 11.44 ± 0.22 larger than e/μ χ^2 /ndf = 6.3 / 9 66 68 70 LEP W→lv 10.84 ± 0.09 Br(W→hadrons) [%] χ^2 /ndf = 15.4 / 11 10 11 12 q/l universality at 0.6% Br(W→lv) [%]

Winter 2005 - LEP Preliminary

Higher center of mass

- Upgrade: Increase energy of the e- beam from 80 GeV to 150 GeV to measure Higgs self coupling
- The Higgs self couplings measurements one of key topics for the future -- ILC (30%) and LHC (20%) cannot do the full job:
 - only way to reconstruct the Higgs potential:

$$V_{H} = \mu^{2} \Phi^{+} \Phi + \eta (\Phi^{+} \Phi)^{2} \rightarrow \frac{1}{2} m_{H}^{2} h^{2} + \sqrt{\frac{\eta}{2}} m_{H} h^{3} + \frac{\eta}{4} h^{4} \text{ with } :$$

$$m_{H}^{2} = \eta v^{2} / 2 \text{ and } v^{2} = -\mu^{2} / \eta$$

¹Presented by Tor Raubenheimer *ICFA* Higgs Factory Workshop November 14th, 2012

$$\lambda_{SM} = \sqrt{\frac{\eta}{2}} m_H$$

A $\gamma\gamma$ Collider with a center of mass around 300 GeV and ILC characteristics, will produce 80 events in bbbb channel for a 120 GeV Higgs Possible to suppress background and have large significance

after 5 years of data taking

S.Kawada.. et.al, Phys. Rev. D 85, 113009 (2012)

$$S_{ldeal} = \frac{N_{Sg}}{\sqrt{N_{total}}} = 4.9$$

Disclaimer

- Many of these results are old.
- Better simulation and detector designs available
- If a new "official" design comes out of this meeting, I recommend that we repeat and expand these studies

γγC Summary

- The Higgs factory γγC Physics program is
 - Complementary to other programs (LHC & e-e+)
 - $\Gamma_{\gamma\gamma}$ to 2% (Model independent)
 - Results in a 13% on Γ_{Total}
 - Results in a Y_{tt} of 4%
 - AND nevertheless unique:
 - Precise measurements of CP-admixture < 1% in Higgs
- More physics topics that go well beyond Higgs
 - Other examples: τ factories including g-2
 - $e^-e^- \rightarrow e^-e^- \tau^+ \tau^-$, $e\gamma \rightarrow W\nu \rightarrow \tau \nu \nu$, $\gamma\gamma \rightarrow \tau \tau \gamma$
 - $[\sigma(\gamma \gamma \rightarrow \tau \tau \gamma) > 100 \text{ pb}]$
- $e^-e^- \rightarrow e^-e^-$ and $e\gamma \rightarrow W_V$ also important

BACKUP

More Primary Parameters

Parameter	HFiTT	Sapphire	SILC	CLICHE
ε _x / ε _y [μm]	10/0.03	5 / 0.5	6/5	1.4 / 0.05
$\beta_{\rm x}/\beta_{\rm y}$ at IP [mm]	4.5/5.3	5/0.1	0.5 / 0.5	2 / 0.02
$\sigma_{\rm x}/\sigma_{ m y}$ at IP [nm]	535/32	400 / 18	140 / 125	138 / 2.6