Physics at
Photon Colliders

Prof. Mayda M. Velasco

Northwestern University




70

60

50

40

30

20

10

Higgs Boson discovered in 2012 at the LHC
using 8 TeV data and is still there at 13 TeV ©
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st o 1) s fin V8P 380 @LHC the Higgs is better detected in "t 2
: ;

rare decays like yy and ZZ—>4L o

» Reflecting the power of
Signal/Power

Higgs BR + Total Uncert
)

Sensitivity of Higgs to fermions (g;) 107
Higgs-strahlung (WH/ZH or VH) Associated production with a i pair (ttH) 1
Wiz comes from the gg to H production and
dominated by the top quark 10_3L_______—*—-—af
E Zy E
See example for H to bb = we need to . ]
[ up ]
do this elsewhere like @yyC :
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The discovery of Higgs Boson has created as many
questions as it has answer

K. Cranmer

Higgs boson mass (Mn) & decay width (I'n)

Higgs boson quantum numbers JPC and tensor structure
Higgs couplings to gauge bosons (gv) and fermions (gr)
Higgs potential - Higgs self-coupling (L)
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The Standard Model Lagrangian - Higgs sector
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Are (1)-(3) measured
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Lsyn = DMHTDMH + ,UQHTH — % (HTH) — (ywH%wy + h-C-) precise enough @

LHC to be sensitive

Couplings to Higgs Couplings to
EW gauge bosons self-couplings fermions the relevant PBSM?
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mu = V2u = Vv (v = vacuum expectation value, 246 GeV)



Examples of the M,; measurements/predictions
before and after discovery
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* Combination of precise measurements of m,,, m,,,, m,
provides critical test of SM if a(m,,) < 6 MeV

* Huge challenge at LHC

* Recent ATLAS result: o(m,,) =19 MeV

* m,, measurement is the bottleneck, where the experimental
uncertainty is worse than the theoretical one

=>» We need to do this elsewhere like @yyC
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LHC Data making clear the = s
need for future
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* Discovered the Higgs Boson Tl = Pointing to

lep :

@125 GeV Al Physics Beyond

A(LEP) |

* Excluded Physics Beyond the s . Standard Model
Standard Model (PBSM) at et S== Of:ar_tlcl?e
relatively low masses: Al Physics:

Ao,c

FB

A% :
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< few TeV in many models

* Need to include Precision |
Electroweak measurements to m |
have sensitivity to PBSM not A e B
accessible direct at the LHC R T
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Already signs from new physics in the Higgs

data by comparing M,,,

* Dashed lines: Calculation of the
regions of the (m,,,m,;) plane where
the electroweak vacuum is stable,
metastable or unstable, and ylelds the
following estimate of the “tipping
point” A, where A goes negative

Top pole mass M, in GeV

* The final result is an estimate:
* log,, (A /GeV)=9.4+1.1

indicating to some experts that we are
(probably) doomed, unless some new
physics intervenes.
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Based on what we have learned at the LHC

1. E..=160GeVorkE, =M,

* We need a “low” energy yyC to study the Higgs in more detailed
* Branching ratios not accessible with precisions at the the LHC (i.e. H=>bb)
and precision measurements of those that loop induced (i.e. H=> yy)
* Look for new physics in the Higgs sector:
* CP admixture
* Flavor violating decays like H 2 ep, ut and et
* Dark sector H > dark photons = fermions

* Precise measurements of W properties (m,,, [\, and W Branching
fraction) using e-y =2 Wv

* Precise measurements of sin?0,,, from e e > ee



First steps: as discussed in the past,
vyC as Higgs Factory and associated e e C and eyC

See talk from

Ziheng Chen Running of Sinzew

vYC
Higgs CP Mixing
and Violations

eyC
IVlW & FW e"y2Wv o Well defined CP-states, with linearly (A = 0) polarized 7's
and y-Structure S0y |y = CPeven

[
=>(7H 1 W) = (P-odd



What is special about yyC ?

*#1: Higher sensitivity due to higher cross sections
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and ability to manipulate the photon beam

W = invariant mass
(c.m.s. energy of colliding
beams)

M = mass of scalar (S) or
fermion (F)

q, [;b 2E,=1000 GeV

polarization to produce J, of yy system is = 0 or 2 e

Mscalar, GeV




Example of
Standard Model
Processes
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What is special about yyC ?

* #2: Unique role in understanding CP structure due to the
possibility of having linearly polarized beams that allow us to
have:

o Well defined CP-states, with linearly (A = 0) polarized 7’s

=l =
= Ly =

 Change polarization of circularly polarized photon beams (AL = 1)
as needed to measure asymmetries for J,=0 produced from:

A A= (+,+) and Ay A, = (-, 7)



What is special about yyC ?

* #2: Unique role in understanding CP structure due to the possibility
of having linearly polarized beams that allow us to have:

o Well defined CP-states, with linearly (A = 0) polarized s
S(n | W > CPeven
=0 L ) = CPodd




What is special about yyC ?

* #3: Special role in understanding Higgs mechanism due to larger cross
sections and the fact that Higgs is produced as an resonance:
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Physics Motivation of yyC Higgs factory

* Important measurements that can only be done with high precision at
the yyC assuming at least 10,000/year

* I',, to 2% (Model independent) Y H
* Resultsina13%on I,
* Resultsin aY, of 4% Y
* Measure CP mixing and violation to
better than 1% FW

proportional to
1-‘Fermions' r

- 1_‘Scalars
in the loop

At higher energies Higgs self
coupling: A,,,to afew %

Vectors




Practical motivation of yyC Higgs factory

* Development of compact yyC starting from ee:
* Based on already existing accelerator technology
* Polarized and low energy e beam: E_ = 80 GeV and

(A= 80%) g

* Cost of building and operation is lower than other
machines (excluding laser... to be discussed here)

* Required laser technology is becoming available @hég



Designs that will produce >10K Higgs/year (10’s)

* HFITT: Higgs Factory in Tevatron Tunnel (Fermilab specific)
* SILC: SLC-ILC-Style yy Higgs Factory (SLAC specific)

* SAPPHIRE: Small Accelerator for Photon-Photon Higgs production using
Recirculating Electrons (Can be built elsewhere)

e CLICHE:  CLIC Higgs Experiment
* Plus designed to come out of this meeting

* Detector and beam environment not more difficult than what we
are experiencing at the LHC

= 3 machinesinl: ee, e vy, vY




Just for reference: Primary Parameters

HFITT Sapphire SILC CLICHE

cms e-e- Energy 160 GeV 160 GeV 160 GeV 160 Gev
Peak yy Energy 126 GeV 128 GeV 130 GeV 128 GeV
Bunch charge 2e10 lel0 5e10 4e9
Bunches/train 1 1 1000 1690
Rep. rate 47.7 kHz 200 kHz 10 Hz 100 Hz
Power per beam 12.2 MW 25 MW 7 MW 9.6 MW
Liee 3.2e34 2e34 le34 4e34
35-50 fbls?t L_gg (Eyy > 0.6 Ecms) 5e33 3.5e33 2e33 3.5e33
CP from IP 1.2 mm 1 mm 4 mm 1 mm
Laser pulse energy 5) 4) 1.2 2]
Total electric power <=100 MW | | ¥t In all designs a laser pulses

of a several Joules with a A~350nm
(3.53 eV) for E.. ~ 80 GeV




ldea of yyC Based on Compton
Backscattering (see Telnov’s talk) o
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[2% measurement of {I', x Br(h — bb)} within a year!]

[ 21% measurement of {I',, x Br(h — ~v)} within a year!)

[ 150 MeV mass measurement in 0.5 year!] *




vyC Higgs-factory

Table 1: Precision of measurements to be performed at HFiTT after 5 years of data taking

Measurement Prem:;o:pzf:::i::ears Comment

I, x Br(h— bb) 0.01

I',, x Br(h > WW¥* 0.03 Leptonic decays only

I, x Br(h— ) 0.12

I, x Br(h — ZZ*) 0.06 One Leptonic and one hadronic decay

I',, x Br(h—> Zy) 0.20 Leptonic and hadronic decays for Z
I, x Br(h—>t'r) - Work in progress

I',, x Br(h — cc) - Work in progress

I',, x Br(h — gg) - Work in progress

I, x Br(h— g'u’) 0.38

T, 0.02 Using Br(h — bb) as input
[otal 0.13 Using Br(h — bb) as input
Hy: Yukawa coupling 0.04 Indirect from I,
Mass measurement 60 MeV From h— vy

CP Asymmetry using h — bb <0.01

CP Asymmetry using h > WW* 0.04




vyC Higgs-factory to Study CP Violation in Detail

Linearly polarized laser

—

y(P,
Circularly polarized laser )

e (FP.)

~(P., P, )

(. is the degree of circular polarization

((3,(1) are the degrees of linear polarization

‘fy'y Ideal To Measure CP Mixing and Violation I




(3,(1) are the degrees of linear polarization (5 is the degree of circular polarization

In s-channel production of Higgs:

0 {[l + Gala] + A [C‘z + C-z] + Az [Clé:s + @61] - Az [Clc-l - C:;f:s] }

/

== 0 if CP is conserved == +1 (-1) for CP is conserved for
A CP-Even (CP-Odd) Higgs

MHE|? = | MH:

s |f A, £0, A,#20 and/or | A;| <1, the Higgs

is @ mixture of CP-Even and CP-Odd states

== Possible to search for CP violation in
vy=> H = fermions without having to measure their polarization

m===pp In bb, a <1% asymmetry can be measure with 100 b
thatis, in 1/2 years arXiv:0705.1089v2




M,, from ey > W~v

Mass measurement from W = hadron events
scan can provide a error < 5 MeV

Luminosity x10°/3.12 GeV (cm?s™)

ey Luminosity Spectra ~1000 1 ;
15} S ey > v W |
g 1 unpolarized beams
.8 ' \
I 3 500
%
0
=
0.5 ©
| L _L 0 T I T [ T [ T T T ‘ T
o w o we o 0 70 8 90 100 110 120
ey Center of Mass Energy (GeV) ee center-of-mass energy (GeV)




ey>W v vs
Yy > W"W-~

Mass measurement

and width might be event
better to work at

vy=> WW threshold

10 |}
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Yy >t




Comment: Interests in W branching fraction to
improve tests of lepton unversality

Winter 2005 - LEP Preliminary Winter 2005 - LEP Preliminary
W Leptonic Branching Ratios W Hadronic Branching Ratio
283/02/2005
ALEPH 4 10.78 =+ 0.29 23/02/2005
DELPHI = 10.55 + 0.34
L3 m & 10.78 = 0.32
OPAL —x— 10.40 + 0.35 ALEPH <4 67.13 + 0.40
- Lepton LEP W—ev o 10.65 + 0.17 SELPHI | | 67 45 + 0.48
universality DELPH! ng el L3 i i 67.50 + 0.52
L3 —a 10.03 + 0.31
tested at OPAL g 10.61+ 0.35 OPAL Fa— 67.91 = 0.61
1% level LEP W—puv ® 10.59 = 0.15
ALEPH o 11.25 = 0.38 LEP | 67.48 + 0.28
W jseosm
_ TBR ~2.7 o OPAL g 11.18 + 0.48
LEP W—stv - 11.44 + 0.22 I
/arger than e/,u ¥indf =6.3/9 66 68 70
LEP W—lv ® 10.84 = 0.09 Br(W—hadrons) [%]
xZ/ndf = 15.4 / 11
101112 q/ | universality at 0.6%

Br(W—lv) [%]



Higher center of mass

* Upgrade: Increase energy of the e- beam from 80 GeV to 150 GeV to

measure Higgs self coupling

* The Higgs self couplings measurements one of key topics for the
future -- ILC (30%) and LHC (20%) cannot do the full job:

-«
h N

/
/
h/

h
AN
AN

- only way to reconstruct the Higgs potential:

|
V, =o' ®+n@d)y° — Emihz +Zh4 with :

m;, =nv>/2 and v’ =—u’/n

!presented by Tor Raubenheimer ICFA Higgs Factory Workshop November 14th, 2012
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Higgs Self-Coupling e
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Final goal: Study of Higgs self-coupling ) '{\ \\ | 2=
A =@(1 +® : \b:\\ zm‘m TR Seen”
/ T 0 . ‘ . A _—y—a—t
200 300 400 500 600 700 800 900 1000
consiani i heSM___ deviton rom the SM Vor(GeV)

A vy Collider with a center of mass around 300 GeV and ILC
characteristics, will produce 80 events in bbbb channel for
a 120 GeV Higgs
Possible to suppress background and have large significance

after 5 years of data taking

S =g _ 49
S.Kawada.. et.al, Phys. Rev. D 85, 113009 (2012 Ideal o
y (2012) / N,




Disclaimer

* Many of these results are old.
* Better simulation and detector designs available

* If a new “official” design comes out of this meeting, |
recommend that we repeat and expand these studies



vyC Summary

* The Higgs factory yyC Physics program is
* Complementary to other programs (LHC & e-e+)
* I',,to 2% (Model independent)
* Resultsina 13% on I

* Resultsin a Y, of 4%
* AND nevertheless unique:

* Precise measurements of CP-admixture < 1% in Higgs

* More physics topics that go well beyond Higgs
* Other examples: 1 factories including g-2
cee>eetTT,ey>WvoTVY, Y7Y2TTY
*[olyy—> 1t 17)>100 pb]
* ee>e e and ey > Wv also important
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More Primary Parameters

HFiTT Sapphire SILC CLICHE

&,/ &, [um] 10/0.03 5/0.5 6/5 1.4 /0.05
B,/B,atIP[mm]  4.5/53 5/0.1 0.5/0.5 2/0.02
o,/ o, at IP [nm] 535/32 400/ 18 140/ 125 138/2.6

32



