# Beam Driven Plasma Acceleration for yy Collider (FACET)

ICFA Mini-Workshop on Future gamma-gamma Collider

Mark J. Hogan April 23, 2017





#### **Plasma Acceleration and the Birth of AAC**



Relativistic driver, no de-phasing



Plasma = highly efficient transformer

## PWFA Research Roadmap: Goal is to Get To A TeV Scale Collider for High Energy Physics



#### **FACET Project History**



#### **Primary Goal:**

Demonstrate a single-stage high-energy plasma accelerator for electrons

#### Timeline:

- CD-0 2008
- CD-4 2012, Commissioning (2011)
- Experimental program (2012-2016)

#### A National User Facility:

- Externally reviewed experimental program
- >200 Users, 25 experiments, 8 months/year operation

#### Key PWFA Milestones:

- ✓ Mono-energetic e- acceleration
- ✓High efficiency e<sup>-</sup> acceleration (*Nature* **515**, Nov. 2014)
- ✓ First high-gradient e<sup>+</sup> PWFA (*Nature* **524**, Aug. 2015)
- Demonstrate required emittance, energy spread (FY16 in preparation for *Nature*)

Premier R&D facility for PWFA: Only facility capable of e+ acceleration Highest energy beams uniquely enable gradient > 1 GV/m

SLAO

## A Roadmap for Future Colliders Based on Advanced Accelerators Contains Key Elements for Experiments and Motivates FACET-II

SLAC



#### Advanced Accelerator Development Strategy Report

DOE Advanced Accelerator Concepts Research Roadmap Worksho February 2–3, 2016



http://science.energy.gov/~/media/ hep/pdf/accelerator-rd-stewardship/ Advanced Accelerator Development Strategy Report.pdf



J. P. Delahaye et al., Proceedings of IPAC2014

#### Key Elements for PWFA over next decade:

- Beam quality build on 9 GeV high-efficiency FACET results with focus on emittance
- Positrons use FACET-II positron beam identify optimum regime for positron PWFA
- Injection ultra-high brightness sources, staging studies with external injectors

# Roadmap Can Be Broadly Distilled into a List of Key R&D Challenges

- Emittance preservation
- Positrons
- Beam loading
- Higher transformer ratios
- Beam dynamics & tolerances
- Plasma source development
- Staging
- Offramp's & First applications

## **Key R&D Challenges**

#### Emittance preservation

- Positrons
- Beam loading
- Higher transformer ratios
- Beam dynamics & tolerances

#### Plasma source development

- Staging
- Offramp's & First applications

## Must Understand and Control Plasma Focussing to Preserve Beam Emittance





- Ion column will focus and guide beam over length of the plasma
- Ideal lens free of geometric aberration

- Increase the density/focusing
- Focusing >1,000 larger than beamline magnets
- Ion column well described by simple model
- Multiple foci within the plasma





Need to match the beam into and out of the plasma focusing channel to preserve emittance

M.J. Hogan – PWFA for Gamma-Gamma, ICFA Tsinghua April 23, 2017

## Plasma Source Development Critical for Preserving Emittance In and Out of the Plasma

- Analytic framework developed at UCLA/Tsinghua
- Match beams with finite energy spread in & out of plasma stages



Roadmap emphasizes need to continue meter scale plasma source development with emphasis on emittance preservation

UCLA -SLAC

#### **Plasma Sources in Use Today**

#### Metal vapor heat-pipe ovens

- Uniform vapor column, scalable,  $n_0 = 10^{14}-10^{17} e^{-10^{17}}$  L = 20-200 cm
- 10m long variant will be used at CERN AWAKE
- Adiabatic transition/focusing at boundaries

Laser ionized hydrogen development

- Plasma profile conforms to laser intensity
- Axion, Axilens, Kinoform + masks for control of transverse & longitudinal profile



UCLA



Future plasma sources will require even greater control (needed for both beam and laser driven concepts) and techniques to dissipate power

## **Key R&D Challenges**

- Emittance preservation
- Positrons
- Beam loading
- Higher transformer ratios
- Beam dynamics & tolerances
- Plasma source development
- Staging
- Offramp's & First applications

#### Beam Loading Produces Narrow Energy Spread & High Efficiency



Narrow energy spread acceleration with high-efficiency has been demonstrated Next decade will focus on simultaneously preserving beam emittance

M.J. Hogan – PWFA for Gamma-Gamma, ICFA Tsinghua April 23, 2017

## **Beam Loading in Non-linear Wakes**

Theoretical framework, augmented by simulations, provides a recipe



Roadmap emphasizes the need to answer the question: How strongly can the witness beam load the longitudinal wake without strong transverse wakes and BBU?

UCLA -SLAC

- Relativistic Beams provide a non-evolving wake
- Possible to nearly flatten accelerating wake even with Gaussian beams
- Gaussian beams provide a path towards  $\Delta E/E \sim 10^{-2}$   $10^{-3}$
- Applications requiring narrower energy spread, higher efficiency or larger transformer ratio  $\longrightarrow$  Shaped Bunches  $\mathcal{L} = \frac{P_b}{E_b} \left( \frac{N}{4\pi\sigma_x\sigma_u} \right)$

## Higher Transformer Ratios – Lower Drive Beam Energy, Fewer Stages and Higher Efficiency



Shaped bunches have many benefits:

- Reduced energy spread
- Maximizes energy boost from a single stage
- Different source & emittance for drive/witness



Need to investigate maximum transformer ratio that still preserves beam quality, e.g. with T = 5 and 20GeV driver can get 100GeV for gg in single stage

## **Key R&D Challenges**

- Emittance preservation
- Positrons
- Beam loading
- Higher transformer ratios
- Beam dynamics & tolerances
- Plasma source development
- Staging
- Offramp's & First applications

#### **Staging and/or High Transformer Ratios** Will Be Required to Reach Very High Energies

#### **Upstream of stage:**

- Inject high-brightness witness bunch from independent source
- Tailored current profiles for maximum efficiency
- Investigate tolerances on timing, alignment

#### **Downstream of stage:**

- Extract/Dump spent drive beam
- Preserve emittance of accelerated beam

5 m long diagnostics system

Two 10' SLC S-band structures

10 GeV Witness bunch injector concept, a possible solution for staging studies and high transformer ratio experiments, is compatible with FACET-II design

M.J. Hogan - PWFA for Gamma-Gamma, ICFA Tsinghua April 23, 2017

SL AG

#### **Computation Has Been Essential Component of FACET Science**

- QuickPIC, OSIRIS have been benchmarked against experiments at SLAC for the last 18 years
- Next generation e- & e+ experiments, plasma injectors, concepts using these beams, PWFA-LC studies...





FFTB & FACET enjoyed strong connection between theory, computation and experiment – every major result benefited from strong collaborations

SLAC

UCLA

## **Simulation Development**

Collider modeling, tolerance studies and optimization need advances in simulation capabilities

- Speed, resolution...more, more, more
  - Need more than a few time steps (BBU, positrons)
  - Collider level emittance means very small grids (adaptive mesh?)
- Physics:
  - Radiation loss
  - Ion motion
  - Scattering
  - All ionization models
  - Arbitrary beam and plasma profiles
  - Polarization
- Integration with accelerator and FEL codes

Another good opportunity to work together to develop common tools





### **Exascale Computing to Support Detailed Collider Design**

## Exascale Modeling of Advanced Particle Accelerators

**Goal (4 years):** Convergence study in 3-D of 10 consecutive multi-GeV stages in linear and bubble regime, for laser-& beam-driven plasma accelerators.

- **How:** → Combination of most advanced algorithms
  - ➔ Coupling of Warp+BoxLib+PICSAR
  - → Port to emerging architectures (Xeon Phi, GPU)
- Who: LBNL ATAP (accelerators) + LBNL CRD (computing science) + SLAC + LLNL

#### Ultimate goal: enable modeling of 100 stages by 2025 for 1 TeV collider design!





#### **Drive Beam Technology**

- Beam driven wakefield accelerators benefit from 30 years of linear collider research and development
- Now benefitting from large free electron laser projects that will be operating within next 5 years
- Leverage experience from existing projects with multi-GeV, MHz repetition rate electron beams



LCLS-II, LCLS-II HE, European XFEL driving industrialization and experience with superconducting linacs

M.J. Hogan – PWFA for Gamma-Gamma, ICFA Tsinghua April 23, 2017

SLAC

Colliders have very demanding requirements

Diagnostics can help understand the physics without the need to design all sub-systems to collider level tolerances

- Vary and measure every beam parameter single shot, every shot
  - Orbit, charge, bunch length, emittance, energy spectrum, phase space...
- Measure plasma parameters
  - Density, length, column width and evolution
- Plot correlations and ascertain range of acceptable inputs

These are very challenging measurements

- Femtosecond time resolution
- Sub-micron spatial resolution
- Benefit from XFEL community (ps to fs to as...)



Advanced Accelerator community has a history of innovation in this area and this is a good opportunity to work together to develop common techniques

## **Planning for FACET-II as a Community Resource**

- FACET stopped running in April 2016 to begin LCLS-II construction
- Over the next few years FACET-II will add new capabilities:
  - LCLS style photoinjector with state of the art electron beam
  - Flexibility e.g. low-charge mode or 'two color' operation for two-bunch PWFA
  - Nominal e<sup>-</sup> parameters: 10GeV, 2nC, 15kA, 30Hz (2019) Beam quality
  - Nominal e<sup>+</sup> parameters: 10GeV, 1nC, 6kA, 5Hz (**2021**) Positron Acceleration
  - External injection Staging studies, ultra-bright sources
- Continue to plan experimental program with **Science Workshops** (October 2015, 2016...)



#### These Experiments Were Made Possible by FACET Users

- 214 Scientists associated with 24 experiments and beam tests (82% of users are external to SLAC)
- 55% of these scientists working on the experiments are On-site Users (badged and trained for experimental work)
- 45% of the scientists involved in FACET experiments are from outside the US
- 52 Institutions are involved in FACET
- Majority of scientists come from universities

UNIVERSITY OF

CERN

UCL



Penn

FACET Enabled a Broad User Community – User Community Enabled FACET Program

Duke

AARHUS

UNIVERSITY

CAL POLY

MAX-PLANCK-GESELLSCHAFT

#### Summary

- The U.S. community has come together at a series of workshops and developed a high level roadmap for beam-driven plasma acceleration
- Priorities include emittance preservation, beam loading, higher transformer ratios, beam dynamics & tolerances, plasma source development, staging studies
- Continued progress will need powerful test facilities such as FACET-II, advanced computer simulation capabilities and diagnostic development
- Many common themes and research areas have been identified as opportunities for collaboration
- Next decade will see worldwide progress on key R&D challenges

#### Summary

- The U.S. community has come together at a series of workshops and developed a high level roadmap for beam-driven plasma acceleration
- Priorities include emittance preservation, beam loading, higher transformer ratios, beam dynamics & tolerances, plasma source development, staging studies
- Continued progress will need powerful test facilities such as FACET-II, advanced computer simulation capabilities and diagnostic development
- Many common themes and research areas have been identified as opportunities for collaboration
- Next decade will see worldwide progress on key R&D challenges