ILC-Based Gamma-Gamma Collider

K. Yokoya 2017.4.23 γγ WS, Tsinghua Univ.

Introduction

- Gamma-gamma for ILC has been an important topics since many years ago including TESLA/JLC/NLC time
- Nonetheless, the technology/design progress has been slow
 - The motivation for $\gamma\gamma$ has been too weak compared with e+e-
 - There was an impact of X750 in ~December 2015 but it is gone by now
- Design of the first stage of ILC is going to be fixed
 - The 1st stage CM energy will be ~250GeV
- Need strong voice for $\gamma\gamma$
- The present slides were mostly prepared when X750 was alive

Basics of yy collider

- Convert ee collider into $\gamma\gamma$ by Laser-Compton scattering
 - Needs longitudinally polarized electron
- Maximum photon energy $E_{\gamma max} = xE_e/(1+x+\xi^2)$ > $x = 4E_e\omega_{laser}/m^2$
 - $\geq \xi^2 = 0.3$ (non-linear Compton parameter)
 - > Optimum of x : $x_{opt} = 2[\sqrt{2}+1] = 4.8$
 - Large x for higher energy gamma
 - But generated gamma is lost by pair creation in the same laser if x> x_{opt}
 - The threshold of this phenomena is a bit soft
 - Including nonlinear effects, $x_{opt} \sim 4.8(1+\xi^2)$

ightarrow
ightarro

• Choice of laser wavelength

> For E_e=500GeV,

- $\gg \lambda_{laser} = 1.5^{2} \mu m$, $E_{\gamma max} \sim 400 GeV$
- > 1TeV e-e- collider is just suited for $E_{\gamma\gamma}$ =700~800GeV
- \succ For E_e=125GeV, (ILC 1st stage)

 $\succ \lambda_{laser} = 1.8 \mu m$ gives $\gamma \gamma \rightarrow Higgs$ (x~1.3)

Laser

Laser parameters

- $> \lambda_{\text{laser}} = 1.5^2 \mu m$
 - \rightarrow 1µm may be OK (major problem is the out-coming angle). Simulation needed
- Flush energy ~ several Joule
- Pulse length ~ 1-2 ps
- Must match with ILC beam pattern
- > Average power O(100kW)
- Candidates of Laser system
 - Big laser like LIFE (NIF: National Ignition Facility)
 - Optical cavity with (relatively) low-power laser
 - FEL
- None of these are ready now for $\gamma\gamma$
- But if serious R&D is done, at least one of these would become feasible by the time ILC reaches 1TeV.
- If not, never progress.
- Listen to T. Takahashi

Santander

Example Parameters for 1TeV

		TESLA gg	ILC gg	ILC e+e-
Electron Parameters				В
Beam energy	GeV	400	500	500
Number of electrons / bunch	10^10	2	1.74	1.74
Number of bunches / pulse		2820	2450	2450
Repetition frequency	Hz	5	4	4
Bunch length	mm	0.3	0.225	0.225
Electron polarization			0.9	0.9
Normalized horizontal emittance	rad.m	2.50E-06	1.00E-05	1.00E-05
Normalized vertical emittance	rad.m	3.00E-08	3.00E-08	3.00E-08
Horizontal beta at IP	mm	1.5	3	11
Vertical beta at IP	mm	0.3	0.3	0.23
Horizontal beam size at IP	micron	0.088	0.1751	0.335
Vertical beam size at IP	nm	4.3	3.0328	2.7
Electron-electron collision parameters				
Horizontal disruption parameter		8.6	0.723	0.2
Vertical disruption parameter		175	41.74	25.13
ee Geometric luminosity	1/cm^2/s	1.91E+35	4.45E+34	2.65E+34
Maximum Upsilon		1.564	0.92449	0.487
Number of beamstrahlung photons		9.24	3.4433	1.97
Energy loss by beamstrahlung	%	97	27.964	10.6
Laser Parameters				
Wavelength	micron	1.06	1.5	
Pulse flush energy	Joule	5	5	
Laser pulse length	mm	0.45	0.45	
Ravleigh length	mm		0.35	
Laser RMS spot size	micron		6.4636	
IP-CP distance	mm		2.5	
rho = d(IP-CP)/sigv			0.8424	
Compton parameter				
x parameter		7.2	6.33089	
xi ² parameter		0.4	0.41627	
Maximum photon energy (1st harm)	GeV		408.59	
Compton crosssection (unpol)	cm^2		1.647E-25	
Compton crosssection (pol.term)	cm^2		1.959E-26	
Compton crosssection	cm^2		1.471E-25	
CP luminosity per bunch	/cm^2		1.251E+35	
kappa = lumCP/N*sig(Compt)			1.0579	
minimum electron energy E0/(1+11*x)	GeV		7.078	
Simulation				
number pf photons after CP (2 beams)	10^10		13.867	
numbber of positrons after CP (2 beams)	10^10		0.5635	
minimum electron energy after CP (low edge of bin,	GeV		6	
width 0.5GeV)				
number of final photons (2 beams, incl. beamstr)	10^10		26.32	
beamstr. Photons	10^10		12.453	
number of final positrons (2 beams, incl. coh.pair)	10^10		0.5665	
positrons from coh.pair	10^10		0.003	
total gg luminosity	E34		11.600	6
gg() luminosity (z>0.8)	E34	1.7	0.254	

Multiple Compton Scattering

- Contribution of multiple Compton scattering is large with the conversion coefficient $\,\kappa\,^{\sim}\,1$
- Probability of n-times scattering is κⁿ/n! (Poison distribution)
- The minimum electron energy after n-times scattering is E_e / (1+nx)
- n~10 must be taken into account
 - Larger $x \rightarrow$ lower electron energy
- These low energy electrons are deflected by the Coulomb field of the on-coming beam with large angles and cause background

Electron Spectrum after CP

Electron Tail Spectrum

Deflection by Beam Force

• Deflection angle of low energy electrons by the Coulomb force of the on-coming beam

$$\sqrt{\frac{Nr_e}{\gamma'\sigma_z}\log[\]}$$

- γ' = Lorentz factor of electron, proportional to E_0/x
- log[] contains details of the electron beam size but the dependence is weak because [] is large
 - The deflection angle mainly depend on the long tail of the Coulomb field, and hence determined more or less by the line charge density

Photon Spectrum after CP

ILC $\gamma - \gamma$ TESLA Dec.2004 Low-Energy Electron Spectrum after CP

Photon Energy Spectrum after one scattering

γγ Luminosity

Total luminosity ~4.948 plotted range $~4.948 \times 10^{34} / \mathrm{cm}^2 / \mathrm{s}$

Crossing Angle

- The IP region geometry must have large crossing angle to accept the low energy electrons
 - Best is thought to be around 25mrad for γ - γ .
- ILC TDR
 - crossing angle 14mrad
 - γ - γ is not mentioned
- 20mrad had been adopted for e+e- in early stage of ILC design
 - At the time of RDR study it was agreed to reduce the angle for e+e- from 20mrad to 14mrad
 - > When changing the angle for γ - γ later on
 - Beam dump must be reconstructed
 - To change 20mrad→25mrad, old and new beam dumps overlap. Civil engineering almost impossible.
 - The change 14mrad \rightarrow 25mrad is easier in this respect
 - To go back to e+e- again is indispensable

14mr => 25mr

A.Seryi, LCWS06

This doesn't look realistic

- Big CFS work including new main dumps
- compatible with push-pull?

(This plot was created before push-pull) May still be realistic, if the $\gamma\gamma$ community is strong?

 additional angle is 5.5mrad (=(25-14)/2) and detector need to move by about 3-4m

2016/6/1 LCCPDeb at Santander

IR Geometry

$\gamma\gamma$ Luminosity Reduction due to Small Crossing Angle

- Sqrt(N/ $\sigma_z \lambda_L$) should be proportional to θ (θ = angle reserved for out-going beam)
- \rightarrow N is proportional to $\theta^2 \sigma_z$
- \rightarrow Luminosity proportional to ($\theta^2 \sigma_z$)² x λ_L^2
- Longer σ_{z} causes hour-glass problem. May be OK up to x 1.5
- → If crossing angle is 20mrad, luminosity is about same or half compared with 25mrad. Too small if 14mrad

	crossing angle	θ	σ	L/LO
$\lambda_L = 2\mu m$	14 mrad	4.5 mrad	450µm	0.064
	20 mrad	10.5 mrad	450µm	0.94
	25 mrad	15.5 mrad	300µm	1
	crossing angle	θ	σ	L/LO
) _1.um	crossing angle 14 mrad	θ 4.5 mrad	σ _z 450μm	L/L0 0.016
λ_L =1 μm	crossing angle 14 mrad 20 mrad	θ4.5 mrad10.5 mrad	σ _z 450μm 450μm	L/L0 0.016 0.47

Maybe, we can do a bit better with 14mrad but not much

- At Ee=500GeV
- Accept some more background

Scaling from old design only. Need detailed simulation again.

2017/4/23 Tsinghua, Yokoya

Example of electron distribution at front face of QD0

 λ_{L} =1.5 μ m, E_e=500GeV crossing angle 14, 20, 25mrad L*=4.1m, B=4Tesla red: < 8GeV green: 8-30GeV blue: > 30GeV dashed circle show the beam pipe for out-going beam

ILC $\gamma\gamma$ May 2016 IP Electron Position at s=4.1m, B=4.0T, 14.0mrad

CAIN2.43 20160608(111732)

Beam Dump

• Beam dump

- Main dump must accept ~10MW photons
- Laser-Compton is stronger than beamstrahlung (max. 1.4MW for 1TeV e+e-) and the angle is smaller (1/γ)
- Cannot be bent/swept . The window for e+e- does not work
- A candidate is Ar gas dump
- No hardware detail yet

A Candidate of Photon Dump for Undulator Positron System

- Photons from undulator must be dumped after creating positrons
- O(10MeV), up to 300kW
- Water dump like the main dump does not work due to heating and radiation damage of the window

Tumbling Window

- The window must be thin (0.1-0.2 mm thick) to avoid heating
- Move the window to lengthen the life due to dpa (dislocation per atom)
- Velocity cm/day
- Must be cooled by He gas of a few atm

Other Issues

- In addition to the problems
 - Laser system
 - crossing angle Beam dump
 - Another polarized electron gun plus a few 100 MeV linac
 - Positron system can be used for acceleration to 5GeV and transport to DR

there are still lots of items to be studied

- Detector
 - Basically can use the same detector for e+e-
 - But must be checked in many respects
- Layout of the interaction region
 - Depends on the laser system
- Beam line from IP to the beam dump
 - The design of this beam line is not easy because of the 100% energy spread of the electron beam
 - ILC dump line for 1TeV with average beamstrahlung loss ~10% already has a problem of the back scattered particles from the line to the detector

Electron Spectrum after IP

Conclusions

- The technology for $\gamma\gamma$ will be feasible by the time of the 2nd stage of ILC, iff serious R&D is done.
- Luminosity of $\gamma\gamma$ is presumably too small if we stay at TDR crossing angle 14mrad
- To change the crossing angle at the time of transition to $\gamma\gamma$ is not realistic because of the big CFS work
- Therefore, if we go to γγ collider in the future, the angle should be ~20mrad from the beginning
- However, the major problem of $\gamma\gamma$ is its motivation
 - Additional cost is small (except laser, which we do not know yet)
 - Nonetheless, $\gamma\gamma$ is still a minority
 - X750 is gone