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About ICUIL o The objectives of ICUIL 2/ (2] (A

Objectives
The International Committee on Ultra- O To provide a venue for discussions among representatives of high-intensity laser

High Intensity Lasers (ICUIL) is an facilities and members of user communities, on international collaborative activities
organization concerned with international such as the development of the next generation of ultrahigh intensity lasers,
aspects of ultra-high intensity laser exploration of new areas of fundamental and applied research, and formation of a
science, technology and education. A

global research network for access to advanced facilities by users.

O To promote unity and coherence in the field by convening conferences and workshops

Charter dedicated to ultrahigh intensity lasers and their applications.

Committee O To accelerate progress in the field by sharing information, exploring opportunities for
joint procurement, and exchanging equipment, ideas and personnel among laser
laboratories world-wide.

O To attract students to high-field science by promoting their education and training, their
interactions with prominent scientists, and access to the latest equipment, results and
techniques.

O To strengthen and exploit synergy with other relevant fields and technigues, notably
accelerator-based free electron lasers.
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2009 ICUIL World Map of Ultrahigh Intensity Laser Capabilities
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Labels represent the establishments with physical and administrative responsibility for the
ultrahigh intensity laser system or facility
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Present ICUIL World Map of Ultrahigh Intensity Laser Capabilities
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LLNL’s Laser-Compton Test Station enables valldatlon of novel,
compact, high-flux, narrow-band architectures and technqlogles

" laser-Compto
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The characteristics of optimized laser-Compton
gamma-ray sources enable “nuclear photonics”
4 B
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| T-REX: Thomson-Radiated Extreme
X-rays Moving X-Ray Science inlo the
"Nuclear® Applications Space with
Thompson Scattered Photons

C. P.J. Banty, F. V. Hanemann

September 27, 2004
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The characteristics of optimized laser-Compton
gamma-ray sources enable “nuclear photonics”
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ps-duration, pulsed isomer physics and t photo-fission and micron-scale, ps-duration
position source spectroscopy transmutation pulsed neutron sources

‘—

D. Habs, T. Tajima, J. Schreiber, C. Barty, M. Fujiwara & P. Thirolf, “Vision of nuclear physics w/ photo-nuclear reactions by laser-driven gamma beams,” EPJ D 55, ’09
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All of the meter-scale, high-efficiency, high-damage-threshold,
gratings for ARC have been fabricated at LLNL
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Total Energy
~6.5 ki @ 1 ps
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Total Energy
100 kJ @ 20 ns

‘ Lawrence Livermore National Laboratory
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%7, Why can’t ARC produce higher peak power?

- intensity dependent damage of final optics
- - limited amplification bandwidth

_ - limited stretched pulse duration

‘ Lawrence Livermore National Laboratory



Conventional chirped pulse amplification produces high
intensity on the final optics

The pulse duration is short and the energy/intensity is high on
the final grating and subsequent optics

At = Atinput/ 2

/\

<$npress|0n 7

J chirped pulse compressed pulse ( )
Atinput At =FTL

| ‘ Lawrence Livermore National Laboratory N A‘
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Now consider the first half of the traditional 4 grating compressor

At = Atinput/ 2

I\
G2 \ D

half compression

O

( J chirped pulse G1
Atinput

| ‘ Lawrence Livermore National Laboratory N A‘ {%
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Separating G1 & G2 by 2x fully compresses the pulse AND
reduces the flux on final grating

G2 |
full campression
. At =FTL

/\l\
( J chirped pulse G1

| ‘ Lawrence Livermore National Laboratory N A‘S{%
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Separating G1 & G2 by 2x fully compresses the pulse AND

reduces the flux on final grating

(/fu}ooqpressmn

but edges are spatially chirped

J chirped pulse

>

| ‘ Lawrence Livermore National Laboratory
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Decreasing the input beam size increases the degree of output
spatial chirp

% D
K bl
pulse duration varies with beam location
G

G1

| ‘ Lawrence Livermore National Laboratory N A‘ {%
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For small enough input beams, the output beam spatially lacks the
spectral content to produce a short pulse

—— e,

local spectral bandwidth is uniform

G1

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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For small enough input beams, a uniform, long-duration “chirped”
beam results

Chirped
Beam

D/\

— e

Atsiretch/Dtmin ~ output size/input size

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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For small enough input beams, a uniform, long-duration “chirped”
beam results

Chirped
Beam

D/\

— e

Atstretch/Atmin ~ 40 in 1D f0r NIF

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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For small enough input beams, a uniform, long-duration “chirped”
beam results

Chirped
Beam

D/\

— e

Atstretch/Atmin ~ 1600 in ZD fOr NIF

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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As in CPA, amplification of a “chirped beam” avoids intensity
dependent amplifier damage

Chirped Beam

Amplifier

input

Chirped Beam
output

o=

PLENN PN
p NN i AN

N

2

N

The local pulse duration is
long everywhere within the
amplifier

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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However the “pulse compressor” for a chirped beam can be a
simple “lens”

Chirped “Pulse
Beam Compressor”

e

All frequencies coherently overlap at
the focus and are properly phased to
produce a short duration pulse

dig |

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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However the “pulse compressor” for a chirped beam can be a
simple “lens”

Chirped “Pulse
Beam Compressor”

All frequencies coherently overlap at
\

‘ T m — the focus and are properly phased to
produce a short duration pulse

the intensity on the final
optic is LOW

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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Unfortunately, the focus of a chirped beam does not produce
high intensity

1D Chirped “Pulse
Beam Compressor”

ﬁ_..E_ =

Traveling Wave
Line Focus

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.

l ‘ Lawrence Livermore National Laboratory N A‘Sﬁ“

MaOora Nucinar Secerty Admmat ston



The duration of the of the line focus is the Fourier limit of the
total input bandwidth

1D Chirped “Pulse At = FTL
Beam Compressor”

ﬁ_..E_ =

Peak Power
= E/At

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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The width of the line focus is a function of the beam chirp

1D Chirped “Pulse Ax = F(chirp)
Beam Compressor”

ﬁ_..E_ =

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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The tilt of the line focus is a function of the f-number and beam
chirp

1D Chirped “Pulse O = F(f#,chirp)
Beam Compressor”

ﬁ_..E_ =

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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The tilt of the line focus is a function of the f-number and beam
chirp

1D Chirped “Pulse O = F(f#,chirp)
Beam Compressor”
[ | |

_  w

Ideal for x-ray lasers etc. but is
not “high intensity”

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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A non-imaging concentrator, plasma mirror however might
enable high intensity

1D Chirped “Pulse
Beam Compressor”

ﬁ_..E_ =

Plasma Mirror
Focus

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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Formula for a “high intensity” NIF Exawatt:

Use mixed media amplifiers to enable shorter pulses

* Upgrade grating fabrication from 0.9m to ~2m

* Combine chirped pulse AND chirped beam amplification

* Create multiple beams before final pulse compression

e Coherently add the compressed beams

‘ Lawrence Livermore National Laboratory N A‘ ‘%
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Formula for a “high intensity” NIF Exawatt:

Upgrade grating fabrication from 0.9m to “2m

Combine chirped pulse AND chirped beam ampilification

‘ Lawrence Livermore National Laboratory
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Full beam chirped pulse amplification with 2 m wide gratings ...

_/\
At =1.67 ns

37cm 37cm

... would enable extraction of ~ 3kJ or 2x more energy than ARC

| ‘ Lawrence Livermore National Laboratory N A‘ (‘{i
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However, chirped pulse + chirped beam amplification ...

At=11.7 ns

At =20 ns NIF Power Amps

NN

... would enable full extraction of 25 kJ from one NIF beam line

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.

| ‘ Lawrence Livermore National Laboratory N A‘S{;;

Matore Nuciear Secerty Admmat ston



However, chirped pulse + chirped beam amplification ...

At=11.7 ns

At =20 ns | 37cm
... would enable full extraction of 25 kJ from one NIF beam line

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.

MaOora Nucinar Secerty Admmat ston
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However, chirped pulse + chirped beam amplification ...

At=100fs

..... 37cm

37cm
... would enable full extraction of 25 kJ from one NIF beam line

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.
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However, chirped pulse + chirped beam amplification ...

>20 kJ in 100 fs or 0.2 EW/NIF beam

ce | At =100 fs
I 185em( ]
R 37cm

37cm
... would enable full extraction of 25 kJ from one NIF beam line

US Patent 6804045 B2, Barty, C. P. J. (2004). Optical Chirped Beam Amplification and Propagation.

| ‘ Lawrence Livermore National Laboratory N A‘ !"é

Naome! Nuciear Secerey Ldmmat ston



Formula for a “high intensity” NIF Exawatt:

Create multiple beams before final pulse compression

‘ Lawrence Livermore National Laboratory
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Of course the final grating clearly cannot ...

>0.2 EW

At=100fs

---------------------------------------------------------------------------------------------

R R R L L R L L L L R L LR s ey

"""" . 37cm

e
.
.
.
0
"
.

... handle a >20 kJ, 100 fs pulse!!!

| ‘ Lawrence Livermore National Laboratory N A‘S{i“
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Final optic damage limits machine performance

Mirror Damage Threshold vs Pulselength
L
12.0 ¢
e
10.0 ;
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0.0
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“Damage Threshold” = unity probability of damage !!!
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Real systems with real beam contrast must ...

Fraction damaged
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For ARC, an operating point at which ...
Operations DTL @ 10 ps

Q ) >
> 10
g -2 i
g 10° -
8
2 R ./ A S A /N 1)
g 10
. NF @ G4
-8 10 ’ contrast=0.14 H
S ) - 1.4ps »
i o 2ps 1
g 10 e ;m .
-7 -
£10 - =« d_limit T
1 ()'8 I 1
6 8

Average fluence [J/cmZ]

... optic damage is < 10 per shot is chosen
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Beam splitti;ng ‘;‘N” times before compression ...

D E ~ 20 kJ x (N-1)/N

P~0.2/NEW

At =100 fs

------------------------------------------------------------------------------

(1/N)

----------------------------------------------------

... enables safe operation of G6

| ‘ Lawrence Livermore National Laboratory N A‘ (‘%
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Note: the polIseé duration is long at G5 so ...

D E ~ 20 kJ x (N-1)/N

P~0.2/NEW
f Vacuum Vessel h At =100 fs
G6 S =
B 1
T T E ~ 20 kJ x (1/N)

... only the last 2 gratings need to be in vacuum

| ‘ Lawrence Livermore National Laboratory N A‘ ("‘é
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Formula for a “high intensity” NIF Exawatt:

Coherently add the compressed beams

‘ Lawrence Livermore National Laboratory
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The Nexawatt focusing system would coherently ...

> 200 PW

N ~20

G2 G3 4

& >20/N kJ
25 23 Kk 100

20 ns 3.3 ns

... combine N identical beams AFTER amplification

| ‘ Lawrence Livermore National Laboratory INY S_{%
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Nexawatt beam phasing tasks are similar in many ways to those
already solved by the large telescope community

N L

| ‘ "r.ux.

-
J ..'. .

‘ Lawrence Livermore National Laboratory



The Nexawatt architecture is also compatible ...

> 200 PW

mm -1 I
N ~20 a e ——,
— i 4 L &
p —
‘i'! _—
§==
o il e —————
. \'\ ,_/,} | §=
>20/N KJ
25 kJ 23 kJ 100 fs
20 ns 3.3 ns

... With “other” focusing arrangements

I ‘ Lawrence Livermore National Laboratory INY S{‘o‘g
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A converging dipole wave creates ...

Converging dipole wave maximizes focal intensity and is an exact solution to Maxwell’s equations

Minimum focusing volume

Vip ~ 0.032)°

E° +H?
8/‘."

... the minimum possible focal volume

I. Gonoskov, A. Aiello, S. Heugel, and G. Leuchs, Phys. Rev. A (2012)

l ‘ Lawrence Livermore National Laboratory
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Dipole focusing can be approximated ...

Off-axis parabolic
~ mirrors for
\ channels 7-12

Direction of
propagation for
channels 7-12

Off-axis parabolic
& mirrors for

channels 1-6

Direction of
propagation for
channels 1-6

... With as few as a dozen beams

A.Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. llderton,A. Kim, M. Marklund, G. Mourou, and A. Sergeev Phys.Rev.Lett. 113, 014801 (2014)

MaOora Nucinar Secerty Admmat ston
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Dipole-wave focusing enables “EW” intensity ...

Geometry

Intensity,
x102°W/cm?

I/1(f=1.2) Equivalent

power (f=1.2) Piota = 200 PW

Single beam
(f=1.2)

Dipole-Wave

Double-Belt-12
12x (f=0.96)

1.2

16.7

13.4

1 200 PW f/1.2 focus

13.9 2.8 EW Ideal Dipole Wave

11.2 2.2EW 12 beam approximation

courtesy of Dr. Alexander Sergeev

... from a 10x lower peak power system

I ‘ Lawrence Livermore National Laboratory
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Nexawatt summary:

Ultra-Relativistic Optics
Nexawatt

Focused Intensity (W/cm?)

[S—
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1960 1970 1980 1990 2000 2010 2020

® Uses existing high efficiency, high damage
threshold, high dispersion MLD gratings

® |s compatible with existing tools for
fabrication of compressor gratings

® Operates within established damage limits
® Requires only two, 2-meter wide gratings

e Extracts all of the NIF beam line stored
energy

® Phases “identical” beams created after
amplification

® |s compatible with existing beam phasing
technologies

® Could produce exawatt-scale intensities
from a single, NIF or NIF-like beam line

® |s compatible with high-efficiency, high-
repetition, fusion “energy” laser technology

I ‘ Lawrence Livermore National Laboratory
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“Beam in a Box” concepts for 100 kW IFE beams ...

NIF Laser Bay 1

... exist and would enable a 15 Hz Nexawatt!

I ‘ Lawrence Livermore National Laboratory N A‘S‘I‘%
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The Mercury laser project —

S

g - » L r; ’J_A__‘..-"""“‘ o =
o
provided the blueprint for IFE “!'

=

“beam in a box” concepts and
rep-rated PW lasers

* Up to 617 W achieved

* 0.3 Million shots to date
in consecutive 0.5 -2 hr
operations
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“Beam in a Box” concepts at been demonstrated at...

NIF Laser Bay 1

... up to 3 kW levels & at appropriate thermal loadings for 100 kW
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