

Recent Results on VBS, Exclusive WW and Tri-boson Production from ATLAS CLHCP 2016

Ruiqi Zhang

Centre de Physique des Particules de Marseille University of Science and Technology of China

On behalf of the ATLAS Collabration

SM Cross Section Measurement

1

Electroweak theory is non-Abelian.

• Gauge bosons should interact among themselves. .

Effect of new physics at low energy scale can be parametrized by an effective Lagrangian.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{dimension \ d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} O_i^{(d)}$$

Dimension 4	Dimension 6	Dimension 8
WWWW, WWZZ	WWZ γ , WW $\gamma\gamma$	all VVVV
non-linear representation	non-linear representation	linear representation
α_4 , α_5	$lpha_0/\lambda^2$, $lpha_c/\lambda^2$	$f_{S,i}/\lambda^4$, $f_{M,i}/\lambda^4$, $f_{T,i}/\lambda^4$

Effective Field Theory description: • arXiv:hep-ph/0606118

$W^{\pm}W^{\pm}$ jj Production

- $\sqrt{s} = 8$ TeV, $\int L = 20.3 \ fb^{-1}$, arXiv:1405.6241
- Electroweak(α_{EW}^4 at LO) VBS:

• Electroweak (α_{EW}^4 at LO) non-VBS:

$W^{\pm}W^{\pm}$ jj Production

- First search for $W^{\pm}W^{\pm}jj$ production.
- Sensitive to new physics via aQGC.
- For EW+Strong measurement(Inclusive region):
 - Two same charge leptons with $p_{T}>25$ GeV and $|\eta|<2.5.$
 - At least 2 jets with p_T > 30 GeV and $|\eta|$ < 4.5, ΔR_{lj} > 0.3.
 - $m_{II} > 20 \text{GeV}, \ \Delta R_{II} > 0.3, \ E_T^{miss} > 40 \text{GeV}, \ m_{jj} > 500 \text{GeV}.$
- For EW only measurement(VBS region)
 - Additional cut $\Delta |y_{jj}| > 2.4$.
- Backgrounds:
 - Prompt background like WZ/ $\gamma^*(MC)$.
 - Conversion background like $W\gamma(MC)$.
 - Non-prompt background like W+jets, $t\bar{t}$ (Data-driven).

$W^{\pm}W^{\pm}$ jj Cross Section

- Measured and predicted cross section of inclusive production: $\sigma_{measured}^{fid} = 2.1 \pm 0.5 (\text{stat}) \pm 0.3 (\text{syst}) \text{ fb}, \ \sigma_{predicted}^{fid} = 1.52 \pm 0.11 \text{ fb}.$
- Measured and predicted cross section of EW production(including interference with strong production): $\sigma_{measured}^{fid} = 1.3 \pm 0.4 (\text{stat}) \pm 0.2 (\text{syst}) \text{ fb}, \sigma_{predicted}^{fid} = 0.95 \pm 0.06 \text{ fb}.$

W[±]*W*[±]jj aQGCs

- Measurement in VBS region is used to study the aQGCs from WWWW vertex.
- The M_T > 400 GeV cut is applied to improve the limits on aQGCs by 35% comparing to old result(the PRL).

W^{\pm} Z Production

$$\sqrt{s}=8$$
 TeV, $\int L=20.3~fb^{-1}$, ParXiv:1607.03745 VBS phase space

• Lepton $|\eta| < 2.5$, p_T of $l_Z > 15 \text{GeV}$ and p_T of $l_W > 20$, $|m_Z - m_Z^{PDG}| < 10$ GeV, $m_T^W > 30$ GeV, p_T of two leading jets > 30 GeV, $|\eta|$ of two leading jets < 4.5, at least two jets, $m_{jj} > 500$ GeV, $\Delta R(j, 1) > 0.3$.

aQGC phase space:

 |ΔΦ(W, Z)| > 2 and ∑|p_T¹| >250 GeV required in VBS phase space.

Measured electroweak WZjj production is $0.29^{+0.14}_{-0.12}(stat)^{+0.09}_{-0.10}(syst)$ fb. SM prediction is 0.13 ± 0.01 fb at NLO.

$W^{\pm}Z aQGCs$

• Constrains are derived on the aQGCs from the WWZZ vertex.

WVjj Production

- Preliminary results in July 2016.
- Better sensitivity to aQGCs due to large branch ratio.
- Less sensitivity to SM signal due to large background.

- $V \rightarrow jj$ reconstructed as either two jets or one merged jet.
 - Resolved selection:
 - Four small radius (0.4) jets.
 - Merged selection:
 - Two small radius (0.4) jets.
 - One large radius(1.2) jet, jet substructure consistent with the two-body decay.
- The resolved region is further categorized by W \rightarrow l⁺ ν and W \rightarrow l⁻ ν .

WVjj Production

- The transverse mass of WV is used to search for aQGCs.
- Merged region significantly improves the aQGCs sensitivity.

WVjj aQGCs

 $\sqrt{s} = 8$ TeV, $\int L = 20.2 \ fb^{-1}$, • arXiv:1607.03745 Goals:

- Search for exclusively produced W boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$.
- Sensitive to new physics via aQGC.

Signal:

- Opposite charged $e^{\pm}\mu^{\mp}$ leptons with $p_T^1 > 25$ GeV and $p_T^2 > 20$ GeV, $m_{II} > 20 GeV$, $p_T^{e\mu} > 30 GeV$, exclusivity selection requires no extra tracks within 1 mm of primary vertex.
- Additional $p_T^{e\mu} > 120 GeV$ requirement for aQGCs study.

Main Backgrounds:

- Inclusive $W^+W^-(\sim 70\%)$.
- $\gamma\gamma \rightarrow \tau^+\tau^-(\sim 15\%).$

Exclusive $\gamma\gamma \rightarrow W^+W^-$ Cross Section

- Observed signal significance is 3.0σ .
- $\sigma^{Measued}_{\gamma\gamma \rightarrow W^+W^- \rightarrow e^{\pm}\mu^{\mp}} = 6.9 \pm 2.2 \text{(stat)} \pm 1.4 \text{(syst)} \text{ fb.}$
- $\sigma^{\text{Predicted}}_{\gamma\gamma \to W^+W^- \to e^{\pm}\mu^{\mp}} = 4.4 \pm 0.3 \text{ fb.}$

• The 95% CL limits on the couplings α_0^W/Λ^2 and α_C^W/Λ^2 .

www

 $\sqrt{s} = 8$ TeV, $\int L = 20.3 \ fb^{-1}$ Goals:

- Search for triboson $W^{\pm}W^{\pm}W^{\mp}$ production.
- Sensitive to new physics via aQGC.

Signal:

- $W^{\pm}W^{\pm}W^{\mp} \rightarrow I^{\pm}\nu I^{\pm}\nu I^{\mp}\nu$.
- $W^{\pm}W^{\pm}W^{\mp} \rightarrow l^{\pm}\nu l^{\pm}\nu jj$ (I = e, μ).

Backgrounds:

- WZ/ γ^* , W γ +jets or Z γ +jets (MC).
- Lepton's charge mis-ID (Data-driven).
- Fake leptons originated from jets or hadronic decays(Data driven).

www

- Distributions in validation region for $l\nu l\nu l\nu$ and $l\nu l\nu jj$ channels.
- m_T^{31} for $l\nu l\nu l\nu$ channel(Left).
- Third lepton pT for $l\nu l\nu jj$ channel(Right).

WWW Cross Section and aQGCs

- No significant deviation from SM observed.
 - $\bullet\,$ Total and fiducial cross-sections extracted, only ${\sim}1$ sigma significance.
- aQGCs limits with 95%CL set.

Summary

- Results of VBS, Exclusive WW and Tri-boson analysis presented.
- Overall good agreement with SM expectations!

