J/ψ and $\psi(2S)$ production in pp and PbPb collisions at 5.02 TeV with ATLAS

Jing Chen
Second China LHC Physics Workshop

University of Science & Technology of China

Dec. 18th, 2016

Motivation

Charmonia, bound states of c and \overline{c} quarks, could be a unique probe to study the hot, dense system created in nucleus-nucleus (A+A) collisions.

Different quarkonia states are expected to "melt" at different temperatures.

Important parts for quarkonia suppression in heavy ion collisions:

- color screening
- Recombination

Data

This analysis uses data from pp and Pb+Pb collisions at 5.02 TeV recorded by ATLAS in 2015.

The integrated luminosity of the analyzed samples is 0.49 nb-1 for Pb+Pb collisions and 25 pb-1 for pp collisions.

15/12

Day in 2015

 $\sqrt{s_{NN}} = 5.0 \text{ TeV}$

Methodology

Prompt

Produced from short-lived QCD decays (including feed-down from other charmonium states)

Non-prompt

Produced in the decays of long lived b-hadrons - displaced decay vertex

Pseudo-proper decay time

$$\tau(\mu\mu) = L_{xy} m(\mu\mu)/p_T(\mu\mu)$$

Corrected cross section

Ncorr is corrected by acceptance, trigger and reconstruction efficiencies event by event

$$\frac{d^{2}\sigma(pp \to \psi)}{dp_{T}dy} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) = \frac{Ncorr_{\psi}^{p}}{\Delta p_{T}\Delta y \times \int \mathcal{L}dt}$$

$$\frac{d^{2}\sigma(pp \to b\bar{b} \to \psi)}{dp_{T}dy} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) = \frac{Ncorr_{\psi}^{np}}{\Delta p_{T}\Delta y \times \int \mathcal{L}dt}$$

$$Ncorr_{\psi}^{p(np)} = \frac{N_{\psi}^{p(np)}}{\mathcal{A} \cdot \epsilon_{trig} \cdot \epsilon_{reco}}$$

Fit method

Simultaneously fit the invariant mass and pseudo-proper decay time, and get the number of events from the fits.

Cross section

Jing Chen (USTC)

The data are in good agreement with the predictions.

Non-prompt fraction

$$f_{NP}^{\psi(nS)} = \frac{N_{\psi(nS)}^{np,corr}}{N_{\psi(nS)}^{np,corr} + N_{\psi(nS)}^{p,corr}}$$

The non-prompt fraction has strong p_T dependence and behaved nearly same in different rapidities.

Nuclear modification factor

The suppression of charmonium states is quantified by the nuclear modification factor which can be defined for a given centrality class as:

$$R_{AA} = \frac{N_{AA}}{\langle T_{AA} \rangle \sigma^{pp}}$$

 N_{AA} : per-event yield of charmonium states measured in A+A collisions

 $\langle T_{AA} \rangle$: mean nuclear thickness function

 σ^{pp} : cross section for the production of the corresponding charmonium states in pp collisions at the same energy

$$R_{AA}^{J/\psi} - p_T$$

A small increase in R_{AA} with increasing p_T

To be constant in p_T

$$R_{AA}^{J/\psi} - |y|$$

Non-prompt

 R_{AA} is essentially constant as a function of rapidity.

$R_{AA}^{J/\psi} - N_{part}$

The production of J/ψ is most strongly suppressed in central collisions

Jing Chen (USTC)

 N_{part} : number of participants for production of mesons

Double Ratio

Prompt

Stronger suppression of $\psi(2S)$ with respected to J/ψ

Non-prompt

consistent with unity

Summary

- In pp collisions, for cross sections, the predictions are found to be in good agreement with the observed data points.
- A strong suppression of both prompt and non-prompt J/Ψ and $\Psi(2S)$ mesons is observed.
- For non-prompt mesons, double ratio values consistent with unity. For prompt mesons, the values are below unity.

backup

Non-prompt fraction

In **proton-proton collisions**, the values of non-prompt fraction agreed well between 5.02 TeV and 13 TeV.

Simultaneous Fits

For Pb+Pb collisions:

$$PDF(m,\tau) = \sum_{i=1}^{7} k_i f_i(m) \cdot h_i(\tau) \otimes g(\tau)$$

	i	Type	Source	$f_i(m)$	$h_i(au)$
T) -	1	J/ψ	P	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$\delta(au)$
	2	J/ψ	NP	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$E_1(\tau)$
	3	$\psi(2S)$	P	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$\delta(au)$
	4	$\psi(2S)$	NP	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$E_2(\tau)$
	5	Bkg	P	flat	$\delta(au)$
	6	Bkg	NP	$E_3(m)$	$E_4(\tau)$
	7	Bkg	NP	$E_5(m)$	$E_6(\tau)^{16}$

Results for Pb+Pb collisions

 $N^{J/\psi}$: number of J/ψ N_{evt} : number of events measured in minimum bias data for each centrality class

a

Side view

b

Beam-line view

The probability per unit transverse area of a given nucleon being located in the target flux tube is

flux tube is $\widehat{\mathrm{T}}_{\mathrm{A}}(m{s}) = \int \widehat{
ho}_{A}(m{s},z_{A}) dz_{A}$

 $\hat{\rho}_A(\mathbf{s}, z_A)$ is the probability per unit volume, normalized to unity, for finding the nucleon at location (\mathbf{s}, z_A) .

Thickness function: $\widehat{T}_{AB}(\boldsymbol{b}) = \int \widehat{T}_{A}(\boldsymbol{s}) \widehat{T}_{B}(\boldsymbol{s} - \boldsymbol{b}) d^{2}s$

 $\widehat{T}_A(s)\widehat{T}_B(s-b)d^2s$ gives the joint probability per unit area of nucleons being located in the respective overlapping target and projectile flux tubes of differential area d^2s .