

Study of double parton scattering at LHCb

Liupan An

Tsinghua University

18th Dec, 2016 @ Second China LHC Physics workshop, PKU

Outline

Introduction

LHCb measurements $\sqrt{J/\psi}$ + open charm & 2×open charm @ 7 TeV [JHEP 06 (2012) 141] [JHEP 1403 (2014) 108] \sqrt{Y} + open charm @ 7 & 8 TeV [JHEP 07 (2016) 052] $\sqrt{2\times J/\psi}$ @ 13 TeV [LHCb-PAPER-2016-057] In preparation!

Summary and prospects

Introduction

- Provide information on parton transverse profile & correlations in proton
- ✓ Help better understand background in searches for new physics ($Z + b\overline{b}$, W^+W^+ etc.)
- Studies in various experiments
 - ✓ pp: W+2-jets, J/ψ +W, J/ψ +Z, $2×J/\psi$, 2×Y etc.
 - ✓ $p\bar{p}$: 4-jets, γ +3-jets, J/ψ + γ etc.
 - ✓ $p Pb: W^{\pm}W^{\pm}$ (proposed)
 - ✓ $Pb Pb: 2 \times J/\psi$ (proposed)
- ➤ LHCb: pp collisions, smaller x

DPS calculation

- Assumption 1: factorization of transverse & longitudinal components of partons
- Assumption 2: no correlation between two partons
- \Rightarrow Pocket formula

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}}$$

 $\checkmark \sigma_{\rm eff}$ thought to be universal, i.e. independent of process and energy

General purpose of DPS measurements

✓ Measure $\sigma_{\rm eff}$:

validate its universality or probe the dependence on process and energy

✓ Test the pocket formula for differential cross-sections

Effective cross-section

J/ψ + open charm & 2×open charm

✓ Significantly larger than SPS predictions ✓ SPS fraction 1 - 5%

✓ Interpreted as $\sigma_{\rm eff}$ in DPS

[PRD 56 (1997) 3811]

- ✓ J/ψ + open charm: in good agreement with CDF measurement in multi-jet production $\sigma_{\rm eff} = 14.5 \pm 1.7^{+1.7}_{-2.3}$ mb
- ✓ $2 \times \text{open charm: tend to be larger}$

12/18/16

γ + open charm

\blacktriangleright Using 3 fb⁻¹ data at $\sqrt{s} = 7$ TeV & 8 TeV

Fiducial region: $\Upsilon \in 2.0 < y < 4.5$, $p_T < 15 \text{ GeV}/c$ open charm \in 2.0 < y < 4.5, 1 < $p_{\rm T}$ < 20 GeV/c[JHEP 07 (2016) 052]

$\Upsilon(2S)$ $\Upsilon(3S)$ $\Upsilon(1S)$ $\mathbf{D}^{\mathbf{0}}$ 980 ± 50 184 ± 27 60 ± 22 $> 5\sigma$ 556 ± 35 D^+ 116 ± 20 55 ± 17 D_{s}^{+} Λ_{c}^{+} 9 ± 5 6 ± 4 31 ± 7 11 ± 6 1 ± 4 1 ± 3 12/18/16

Results:

 $\mathscr{B}_{\mu^+\mu^-} imes \sigma^{\Upsilon(\mathrm{1S})\mathrm{D}^0}_{\sqrt{s}=7\,\mathrm{TeV}}$ $= 155 \pm 21 \,(\text{stat}) \pm 7 \,(\text{syst}) \,\text{pb}$, $\mathscr{B}_{\mu^+\mu^-} imes \sigma^{\Upsilon(\mathrm{1S})\mathrm{D}^+}_{\sqrt{s}=7\,\mathrm{TeV}}$ $82 \pm 19 \,(\text{stat}) \pm 5 \,(\text{syst}) \,\text{pb}$, $\mathscr{B}_{\mu^+\mu^-}\times\sigma_{\sqrt{\mathit{s}}=8\,\mathrm{TeV}}^{\Upsilon(\mathrm{1S})\mathrm{D}^0}$ $= 250 \pm 28 \,(\text{stat}) \pm 11 \,(\text{syst}) \,\text{pb}$, $\mathscr{B}_{\mu^+\mu^-} imes \sigma^{\Upsilon(1\mathrm{S})\mathrm{D}^+}_{\sqrt{s}=8\,\mathrm{TeV}}$ $80 \pm 16 \,(\text{stat}) \pm 5 \,(\text{syst}) \,\text{pb}$, =

DPS predictions: \geq [PRD 56 (1997) 3811] ✓ With $\sigma_{\rm eff} = 14.5 \text{ mb}$ $\mathscr{B}_{\mu^+\mu^-} \times \left. \sigma_{\sqrt{s}=7 \, \mathrm{TeV}}^{\Upsilon(1\mathrm{S})\mathrm{D}^0} \right|_{\mathrm{DPS}}$ $206 \pm 17 \, \mathrm{pb},$ = $\mathscr{B}_{\mu^+\mu^-} \times \left. \sigma_{\sqrt{s}=7 \, \mathrm{TeV}}^{\Upsilon(1\mathrm{S})\mathrm{D}^+} \right|_{\mathrm{DPS}}$ $86 \pm 10 \, \text{pb},$ =

Consistent!

Liupan An

More comparisons

$\begin{split} R^{\rm D^0/D^+}_{\sqrt{s}=7{\rm TeV}} &= \frac{\sigma^{\Upsilon(1{\rm S}){\rm D^0}}_{\sqrt{s}=7{\rm TeV}}}{\sigma^{\Upsilon(1{\rm S}){\rm D^+}}_{\sqrt{s}=7{\rm TeV}}} &= 1.9 \pm 0.5({\rm stat}) \pm 0.1({\rm syst}),\\ R^{\rm D^0/D^+}_{\sqrt{s}=8{\rm TeV}} &= \frac{\sigma^{\Upsilon(1{\rm S}){\rm D^0}}_{\sqrt{s}=8{\rm TeV}}}{\sigma^{\Upsilon(1{\rm S}){\rm D^+}}_{\sqrt{s}=8{\rm TeV}}} &= 3.1 \pm 0.7({\rm stat}) \pm 0.1({\rm syst}), \end{split}$	✓ Consistent with DPS prediction 2.41 ± 0.18
$\begin{split} R_{\sqrt{s}=7 \text{TeV}}^{\Upsilon(1\text{S})c\bar{c}} &= \left. \frac{\sigma^{\Upsilon(1\text{S})c\bar{c}}}{\sigma^{\Upsilon(1\text{S})}} \right _{\sqrt{s}=7 \text{TeV}} &= \left. \left(7.7 \pm 1.0\right) \% , \\ R_{\sqrt{s}=8 \text{TeV}}^{\Upsilon(1\text{S})c\bar{c}} &= \left. \frac{\sigma^{\Upsilon(1\text{S})c\bar{c}}}{\sigma^{\Upsilon(1\text{S})}} \right _{\sqrt{s}=8 \text{TeV}} &= \left. \left(8.0 \pm 0.9\right) \% , \end{split}$	 ✓ Consistent with DPS prediction ~10% ✓ Exceeds SPS expectation (0.1 − 0.6)%
$R_{\mathrm{D}^{0}}^{\Upsilon(2\mathrm{S})/\Upsilon(1\mathrm{S})} = \mathscr{B}_{2/1} \times \frac{\sigma_{\sqrt{s=7\mathrm{TeV}}}^{\Upsilon(2\mathrm{S})\mathrm{D}^{0}}}{\sigma_{\sqrt{s=7\mathrm{TeV}}}^{\Upsilon(1\mathrm{S})\mathrm{D}^{0}}} = (13\pm5)\%,$ $\sigma_{\sqrt{s=7\mathrm{TeV}}}^{\Upsilon(2\mathrm{S})/\Upsilon(1\mathrm{S})} = \sigma_{\sqrt{s=7\mathrm{TeV}}}^{\Upsilon(2\mathrm{S})\mathrm{D}^{0}}$	 ✓ Compatible with DPS prediction 0.249 ± 0.033
$\begin{aligned} R_{\rm D^0}^{\Upsilon(2{\rm S})/\Upsilon(1{\rm S})} &= \mathscr{B}_{2/1} \times \frac{\sqrt{s=8 {\rm lev}}}{\sigma_{\sqrt{s=8 {\rm TeV}}}^{\Upsilon(1{\rm S}){\rm D^0}}} &= (20 \pm 4)\%, \\ R_{\rm D^+}^{\Upsilon(2{\rm S})/\Upsilon(1{\rm S})} &= \mathscr{B}_{2/1} \times \frac{\sigma_{\sqrt{s=7 {\rm TeV}}}^{\Upsilon(2{\rm S}){\rm D^+}}}{\sqrt{s=7 {\rm TeV}}} &= (22 \pm 7)\%, \end{aligned}$	✓ Kinematic distributions of Υ + open charm also show good agreement with DPS
$R_{\rm D^+}^{\Upsilon(2{\rm S})/\Upsilon(1{\rm S})} = \mathscr{B}_{2/1} \times \frac{\sigma_{\sqrt{s}=7{\rm TeV}}^{\Upsilon(2{\rm S}){\rm D}^+}}{\sigma_{\sqrt{s}=8{\rm TeV}}^{\Upsilon(1{\rm S}){\rm D}^+}} = (22\pm6)\%,$	 Neglecting SPS contribution: σ_{eff} = 18.0 ± 1.3(stat) ± 1.2(syst) mb ✓ Consistent with previous measurements

 $2 \times J/\psi @ 7 \text{ TeV}$

≻Using 37.5 pb⁻¹ data at $\sqrt{s} = 7$ TeV

Fiducial region: $2 < y^{J/\psi} < 4.5$, $p_{\rm T}^{J/\psi} < 10 \text{ GeV}/c$

 \succ Observed with significance $> 6\sigma$

$2 \times J/\psi @ 13 \text{ TeV}$ New!

≻Using ~279 pb⁻¹ data at $\sqrt{s} = 13$ TeV

Fiducial region: 2 < $y^{J/\psi}$ < 4.5, $p_{\rm T}^{J/\psi}$ < 10 GeV/c

➤Cut-based selection

➢Efficiency estimated using simulation & data

Signal yield obtained from simultaneous fit to the efficiency-corrected 2D $(M(\mu_1^+\mu_1^-), M(\mu_2^+\mu_2^-)))$ distribution

 $\succ \sigma(J/\psi J/\psi) = 13.5 \pm 0.9(\text{stat}) \pm 0.8(\text{syst}) \text{ nb}$

Comparison to theory

	Approach		$\sigma(J/\psi J/\psi)$ [nb]	[LHCb-PAPER-2016-057]	
	ripprotein	no $p_{\rm T}$ -cut	$p_{\mathrm{T}}^{J/\psi J/\psi} > 1 \mathrm{GeV}/c$	$p_{\rm T}^{J\!/\psiJ\!/\psi} > 3{\rm GeV}\!/c$	_
SPS -	LOCS	$1.3 \pm 0.1^{+3.2}_{-0.1}$			[PRD 94 (2016) 054017]
	LOCO	$0.45 \pm 0.09^{+1.42+0.25}_{-0.36-0.34}$			[CPC 198 (2016) 238]
	$LO k_T$	$6.3^{+3.8+3.8}_{-1.6-2.6}$	$5.7^{+3.4+3.2}_{-1.5-2.1}$	$2.7^{+1.6+1.6}_{-0.7-1.0}$	[PRD 84 (2011) 054012]
	$\rm NLO^* CS'$		$4.3\pm0.1^{+9.9}_{-0.9}$	$1.6 \pm 0.1^{+3.3}_{-0.3}$	[PRD 94 (2016) 054017]
	$\rm NLO^* CS''$	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8\pm0.6^{+22}_{-5}$	[CPC 198 (2016) 238]
	DPS	$8.1\pm0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$	
	DATA	$13.5 \pm 0.9 \pm 0.8$	$12.0 \pm 0.8 \pm 0.8$	$7.4 \pm 0.6 \pm 0.5$	

DPS: assuming $\sigma_{\rm eff} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$ [PRD 56 (1997) 3811]

- ►LO CO : contribution very small
- ►LO CS/ NLO* CS' : need DPS contribution
- >LO $k_{\rm T}$ and NLO* CS" : uncertainty quite large; consistent with measurement within uncertainty

Differential cross-sections

Liupan An

Differential cross-sections (cont.)

Liupan An

DPS contribution

- > DPS contribution essential for the region $|\Delta y| > 1.5$
- ▶ Compatible with expectations for $\sigma_{\rm eff} = 14.5 \pm 1.7^{+1.7}_{-2.3}$ mb
- Much smaller $\sigma_{\rm eff}$ values are disfavoured
- ► Comparisons with $p_T(J/\psi J/\psi) > 1 \text{ GeV}/c \text{ or } 3 \text{ GeV}/c$ give same conclusions
- Fit with SPS+DPS in preparation; will be given in the paper 12/18/16
 Liupan An

Summary & prospects

DPS is explored at LHCb through several processes Relevant DPS contribution is observed in

- $\checkmark J/\psi$ + open charm & 2×open charm
- $\checkmark \gamma$ + open charm

>Indication for DPS contribution in 2 $\times J/\psi$ @ 13 TeV

➢Prospects

- ✓ Still a lot to be analyzed with RunI data
 - Update existing measurements with more data
 - New channels to look into: $\Upsilon + J/\psi$, $2 \times \Upsilon$ etc.
- ✓ RunII is in progress
 - New energy scale: $\sqrt{s} = 13 \text{ TeV}$
 - More statistics expected: $\mathcal{L}_{int} = 5 \text{ fb}^{-1}$
 - Possibility for triple-parton scattering?

Thank you!

Back up

The LHCb detector

 \succ A single-arm forward region spectrometer covering 2 < η < 5

 \succ RunI (2011-2012): \mathcal{L}_{int} = 3 fb⁻¹ @ 7 & 8 TeV; $\sigma(b\bar{b}) \approx 250 \ \mu b^{-1}$ @ 7 TeV [EPJC 71 (2011) 1645]

 \succ RunII (2015-2018): $\mathcal{L}_{int} = 5 \text{ fb}^{-1} @ 13 \& 14 \text{ TeV}$; $\sigma(b\bar{b}) \approx 500 \ \mu b^{-1} @ 13 \text{ TeV} [JHEP 10 (2015) 172]$

✓ Vertex Locator: $\sigma_{PV,x/y}$ ~10 µm, $\sigma_{PV,z}$ ~60 µm

[JINST 3 (2008) S08005]

- ✓ Tracking (TT, T1-T3): $\Delta p/p = 0.5 0.6\%$ for 5 GeV/*c*
- ✓ **RICHs:** $\varepsilon(K \to K) \sim 95\%$ @ misID rate $(\pi \to K) \sim 5\%$
- ✓ Muon system (M1-M5): $\varepsilon(\mu \rightarrow \mu)$ ~97% @ misID rate ($\pi \rightarrow \mu$)~1 − 3%
- ✓ ECAL: $\sigma_E / E \sim 10\% / \sqrt{E} \otimes 1\%$ (*E* in GeV)
- ✓ HCAL: $\sigma_E / E \sim 70\% / \sqrt{E} \otimes 10\%$ (*E* in GeV)

12/18/16

SPS parton-level cross-section

Assumption 1: factorization of transverse & longitudinal components

$$\Gamma_{ij}(x_1, x_2, \boldsymbol{b}_1, \boldsymbol{b}_2) = D_{ij}(x_1, x_2)T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2)$$

Assumption 2: no correlation

$$D_{ij}(x_1, x_2) = f_i(x_1)f_j(x_2), \qquad T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2) = T_i(\boldsymbol{b}_1)T_j(\boldsymbol{b}_2)$$

 \Rightarrow Pocket formula

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}}$$

$$\checkmark \sigma_{\text{eff}} = \left[\int d^2 \boldsymbol{b} F(\boldsymbol{b})^2 \right], F(\boldsymbol{b}) = \int T(\boldsymbol{b}_i) T(\boldsymbol{b}_i - \boldsymbol{b}) d^2 \boldsymbol{b}_i$$

12/18/16