

SUSY Search groups in China (Only ATLAS): IHEP SUSY Group: RPC SUSY Search

USTC/SJTU SUSY Group: RPV SUSY Search

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

SUSY SEARCHES @ LHC

ON BEHALF OF ATLAS+CMS COLLABORATION

Xuai Zhuang (庄胥爱)

xuai.zhuang@cern.ch

IHEP, Beijing, China

16-19 Dec., CLHCP 2016

SM and Beyond

Photo: A. Mahmoud François Englert

Photo: A. Mahmoud Peter W. Higgs

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

- Higgs boson observed, SM fits the experimental data very well → big success in EW scale
- While has problem in Planck scale:
 - Naturalness and "hierarchy" problem
 - Unification of gauge coupling
 - Dark Matter

Need a more fundamental theory in which SM is only a low-energy approximation → New Physics

New Physics beyond the SM

SUSY Introduction

Establishes a symmetry between fermions (matter) and bosons (forces)

□ Motivation:

- Unification (fermions-bosons, matter-forces)
- Solves some deep problems of the Standard Model
- Provide Dark Matter candidate

Great Luminosity Since 2010

□ The results are based on 13-18 fb⁻¹ @ 13 TeV (RUN2)

~ 40 fb⁻¹ 13 TeV data (2016)

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-10-27 14:12 UTC

SUSY Signature & Search Strategy

- **R** parity: originally introduced for stability of proton $R = (-1)^{3(B-L)+2S}$ R=+1 (SM) R=-1 (SUSY)
 - Conserved R parity (RPC):

Provide Dark Matter (DM) candidate

Typical signature: jets/leptons/photons + MET

• Violated R parity (RPV): no DM candidate

- SUSY sensitive variables: E_T^{miss} , Meff ...
- Accurate modeling of SM background

SM Background Modeling

Standard Model

Top, multijets V, VV, VVV, Higgs & combinations of these

Combined fit of all regions and backgrounds and incl. systematic exp. and theor. uncertainties as nuisance parameters

Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

Dominant sources: normalise MC in data control regions Subdominant sources: MC

Validation

Validation regions used to cross check SM predictions with data

Signal regions

blinded

blinded

SUSY Search @ LHC

Strong production:

- targeting gluinos and 1st and 2nd generation squarks
- □ by far largest cross-sections

3rd generation:

- □ targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

SUSY Search @ LHC

Strong production:

targeting gluinos and 1st and 2nd generation squarks

by far largest cross-sections

3rd generation:

- targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons

Electroweak production:

- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

Strong Production: All hadronic

- ATLAS has two searches based on different scenarios: <u>ATLAS-CONF-2016-078</u>(SS,GG), <u>ATLAS-CONF-2016-052</u>(Gtt, Gbb)
- Signal to BG discrimination based on:
 - Large/medium mass split: Meff, MET,
 - Compressed region: R Jigsaw
- >30 signal regions (SRs) defined targeting above different search scenarios and phase space

- CMS has several searches based on different kinematics:
- **HT and H_t^{\text{miss}} (SUS-16-014):**
 - ✓ binned in jet and b-jet multiplicity.
 - ✓ In each bin, bin further in H_T and H_T^{miss}
- **mT2 search(**<u>SUS-16-015</u>):
 - ✓ binned in H_T, jet and b-jet multiplicity.
 - ✓ In each bin, look at tails of mT2

10

All hadronic: ATLAS results

□ No significant excess observed

All hadronic: CMS results

Strong Production: leptonic signature

- We can also use lepton(s) to probe for strong production signals → suppressed hadronic backgrounds
- For single lepton FS:
 - □ ATLAS: 10 SRs based on MET, Meff, mT, jet multiplicity
 - □ CMS: binned in jet and b-jet multiplicity, L_T, H_T (50 SRs)

Single-leptonic Signature: Results

Strong Production: leptonic signature

- If require same sign 2 leptons or 3 leptons:
 - \rightarrow very rare in SM \rightarrow A good probe for new physics
 - \rightarrow Sensitive for a wide range of models (only Gtt, qqqqWW for CMS)

- ATLAS: 4 RPC+3 RPV SRs defined based on MET, Meff, Nbjet, targeting above specific scenarios
- □ CMS: binned in mT, MET, jet and b-jet multiplicity. In each bin, look at tails of H_T

Di(Multi)-leptonic Signature: Results

Strong Production (summary)

SUSY Search @ LHC

- models and long lived sparticles
- A More exotic models

3rd Generation: stop

Search for stop directly from ~t~t production
Large spectrum of possible stop decays, covering range from low to heavy stop mass, various decay modes.

3rd Generation (summary)

SUSY Search @ LHC

EWK Production: General Remarks

- □ If coloured sparticles much heavier than EW partners
 - Direct chargino/neutralino/slepton production
- Leptonic decay modes provide clean signature:
 - Many leptons (up to 4) + MET
 - Possibly hadronic taus
 - Low jet activity
- **EW SUSY Searches:**
 - o ATLAS-CONF-2016-096(-075): 2-4 leptons
 - ATLAS-CONF-2016-093: 2 taus (IHEP)
 - CMS-SUS-16-024: 3-4 leptons (including taus)

Chargino-Neutralino Pairs: light leptons

ATLAS-CONF-2016-096

CMS-PAS-SUS-16-024

Chargino-Neutralino Pairs: taus

ATLAS-CONF-2016-093

CMS-PAS-SUS-16-024

Chargino-Chargino Pair & Direct Stau Pair

□ First measurement from LHC, No results from CMS yet

EWK Production (summary)

SUSY Search @ LHC

Strong production:

- targeting gluinos and 1st and 2nd generation squarks
- by far largest cross-sections
- 3rd generation:
- □ targeting stop and sbottoms
- Should be lowest mass squarks for naturalness reasons
- **Electroweak production**:
- targeting Electroweakinos, sleptons
- Lowest mass sparticles, clean signature

RPV/LL:

- targeting R-parity violating models and long lived sparticles
- More exotic models

Search for LFV di-lepton Resonance

Z'

 $\tilde{\nu}_{\tau}$

search for a heavy resonance from LFV di-lepton (eµ, eτ or µτ) final states, like RPV SUSY tau sneutrino, Z', QBH

Long term prospects

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14TeV
Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos, 500 GeV stau (IHEP)

Summary

- ATLAS and CMS developed a vast program to search for SUSY.
- No significant excess seen so far, in canonical scenarios, sensitivity is achieved to ~1.9 TeV gluinos, ~900 GeV stops and ~700 GeV EWK-inos
 - ✓ More public results: <u>ATLAS</u>, <u>CMS</u>
- Results with ~35 fb⁻¹ 2015+2016 data are coming soon, stay tuned !
- □ LHC is a discovery machine, new physics may come at any time !

Exciting times are ahead of us!

looking forward to the great discovery!

> Thanks for your attention!

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

	Model	e, μ, τ, γ	Jets	E_{T}^{mbs}	∫£ d1[fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference	
Indusive Searches	$ \begin{array}{l} MSUGRACMSSM \\ \tilde{q} \tilde{q} \cdot \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{q} \tilde{q} \cdot \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \\ (compressed) \\ \tilde{z} \tilde{s} \cdot \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{s} \cdot \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \rightarrow q q W^{+} \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{s} \cdot \tilde{q} \rightarrow \varphi \tilde{k}_{1}^{0} \rightarrow q q W^{+} \tilde{k}_{1}^{0} \\ \tilde{z} \tilde{s} \cdot \tilde{q} \rightarrow q W^{2} \tilde{k}_{1}^{0} \\ GMSB (\tilde{c} NLSP) \\ GMSB (\tilde{c} NLSP) \\ GGM (higgs ino-bino NLSP) \\ GGM (higgs ino-bino NLSP) \\ GGM (higgs ino bino NLSP) \\ GGM (higgs ino LSP) \\ GGM (higgs ino LSP) \\ GGM (higgs ino LSP) \\ Gravitino LSP \end{array} $	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ monojet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \left(SS \right) \\ 1.2 \ \tau + 0.1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 1- <i>b</i> 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	ā. ā 1.3 ā 008 GeV ā 12 ā 12 ā 900 GeV F ¹³ acade 805 GeV	$\begin{array}{cccc} 1.85 \ TeV & m[k] := m[k] \\ \text{is TeV} & m(k_1^2) < 200 \ GeV, \ m(1^{d'} \ gen. 4] := m[2^{nd} \ gen. 4] \\ & m[k_1^2] < 200 \ GeV, \ m(1^{d'} \ gen. 4] := m[2^{nd} \ gen. 4] \\ & m[k_1^2] < 200 \ GeV & \\ & m[k_1^2] < 400 \ GeV & \\ 1.07 \ TeV & m[k_1^2] < 400 \ GeV & \\ \hline 1.07 \ TeV & m[k_1^2] < 500 \ GeV & \\ \hline 2.0 \ TeV & m[k_1^2] < 500 \ GeV & \\ \hline 1.05 \ TeV & m[k_1^2] < 500 \ GeV & \\ \hline 1.05 \ TeV & m[k_1^2] < 500 \ GeV & \\ \hline 1.87 \ TeV & m[k_1^2] < 560 \ GeV & \\ \hline 1.8 \ TeV & m[k_1^2] > 580 \ GeV & \\ \hline m[k_1^2] > 580 \ GeV & \\ \hline m[k_1^2] > 580 \ GeV & \\ \hline m[k_1^2] > 1.8 \ TeV & \\ \hline m[k_1^2] > 1.8 \$	1507.05825 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.00150 1507.05493 ATLAS-CONF-2016-086 1503.08290 1502.01518	
3 rd gen. § med.	<u>23</u> , 3→b£k ⁰ 23, 3→ttk ⁰ 23, 3→ttk ⁰ 23, 3→btk ¹	0 0-1 <i>«.μ</i> 0-1 <i>«.μ</i>	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	я́ я́ я́ 1:	1.89 TeV m k°)−0 GeV 1.89 TeV m k°)−0 GeV 37 TeV m k°)−0 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600	
3rd gen. squarks direct production	$ \begin{split} & \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \to \tilde{h} \tilde{h}_1^0 \\ & \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \to \tilde{\ell} \tilde{\ell}_1^A \\ & \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \to \tilde{\ell} \tilde{\ell}_1^A \\ & \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \to \tilde{k} \tilde{\ell}_1^0 \text{ or } \tilde{\ell} \tilde{\ell}_1^0 \\ & \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \to \tilde{k} \tilde{\ell}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 \text{ ord} \text{ GMSB}) \\ & \tilde{h}_2 \tilde{h}_2 \tilde{h}_2 \tilde{h}_2 \to \tilde{h}_1 + Z \\ & \tilde{h}_2 \tilde{h}_2, \tilde{h}_2 \to \tilde{h}_1 + k \end{split} $	0 $2 e, \mu$ (SS) $0 - 2 e, \mu$ $0 - 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 e, \mu$	2 b 1 b 1 - 2 b - 2 jets/1 - 2 i mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes 4 Yes 4 Yes 4 Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	δ₁ 840 GeV δ₁ 325-685 GeV ĝ17-170 GeV 200-720 GeV δ₁ 90-198 GeV δ₁ 90-323 GeV l₁ 90-323 GeV l₂ 320-600 GeV	$\begin{split} m[\tilde{k}_{1}^{0}] <&100\text{GeV} \\ m[\tilde{k}_{1}^{0}] <&150\text{GeV}, m[\tilde{k}_{1}^{0}] = m(\tilde{k}_{1}^{0}) + 100\text{GeV} \\ m[\tilde{k}_{1}^{0}] &=&2m(\tilde{k}_{1}^{0}), m[\tilde{k}_{1}^{0}] =&55\text{GeV} \\ m[\tilde{k}_{1}^{0}] =&1\text{GeV} \\ m[\tilde{k}_{1}^{0}] -m(\tilde{k}_{1}^{0}) =&5\text{GeV} \\ m[\tilde{k}_{1}^{0}] &=&150\text{GeV} \\ m[\tilde{k}_{1}^{0}] <&150\text{GeV} \\ m[\tilde{k}_{1}^{0}] =&0\text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08618, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1508.08616	
EW dîrect	$\begin{array}{l} \tilde{\ell}_{\xi,\mu}\tilde{\ell}_{\xi,\mu},\tilde{\ell}\to \ell\bar{\ell}\tilde{\ell}_{1}^{\mu}\\ \tilde{k}_{1}^{\mu}\tilde{k}_{1}^{\nu},\tilde{k}_{1}^{\nu}\to \ell\bar{\ell}\nu(\ell\nu)\\ \tilde{k}_{1}^{\mu}\tilde{k}_{1}^{\nu},\tilde{k}_{1}^{\nu}\to \nu_{\tau}\nu_{\tau}\rho\\ \tilde{k}_{1}^{\mu}\tilde{k}_{2}^{\nu}\to \nu_{\tau}\tilde{k}_{1}^{\mu}\ell_{\tau}\rho\nu,\tilde{k}_{1}^{\mu}\rho\nu,\tilde{k}_{1}^{\mu}\ell_{\tau}\rho\nu,\tilde{k}_{1}^{\mu}\rho\nu,\tilde{k}$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2^{-3} e, \mu$ $7/\gamma\gamma - e, \mu, \gamma$ $4 e, \mu$ $1 e, \mu + \gamma$ 2γ	0 - 0-2 jets 0-2 h 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	i 90-335 GeV iii 640 GeV iii 580 GeV iiii 1.0 TeV iiiii 425 GeV iiiiii 635 GeV iiiiiiiiiii 635 GeV iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	$\begin{split} m \tilde{k}_{1}^{0} {=}0\text{GeV} \\ m \tilde{k}_{1}^{0} {=}0\text{GeV}, m(\tilde{\ell},\tilde{\tau}){=}0.5[m \tilde{k}_{1}^{0}){+}m(\tilde{\ell}_{1}^{0})) \\ m \tilde{k}_{1}^{0} {=}0\text{GeV}, m(\tilde{\tau},\tilde{\tau}){=}0.5[m \tilde{k}_{1}^{0}){+}m(\tilde{\ell}_{1}^{0})) \\ m \tilde{k}_{1}^{0} {=}m(\tilde{k}_{1}^{0}){-}m(\tilde{k}_{1}^{0}){=}0, f(\tilde{\tau}){-}m(\tilde{\ell}_{1}^{0}) \\ m \tilde{k}_{1}^{0} {=}m(\tilde{k}_{1}^{0}){-}m(\tilde{k}_{1}^{0}){=}0, f(\tilde{\tau}){-}m(\tilde{k}_{1}^{0}) \\ m \tilde{k}_{1}^{0} {=}m(\tilde{\ell},\tilde{\tau}){=}0.5[m(\tilde{\ell}_{1}^{0}){+}m(\tilde{\ell}_{1}^{0})) \\ m \tilde{\tau} {=}r<1mn \end{split}$	1403.5294 ATLAS-CONF-2018-096 ATLAS-CONF-2018-096 1403.5204, 1402.7059 1501.07110 1405.5086 1507.05493 1507.05493	
Long-lived particles	$\begin{array}{l} \begin{array}{l} \text{Direct} \ensuremath{\xi_1^*} \ensuremath{\xi_1^*} \ensuremath{graventarrow} \ensuremath{\xi_1^*} \ensuremath{graventarrow} grave$	$ \begin{array}{c} \stackrel{*}{\underset{1}{1}} & \text{Disapp. trk} \\ \stackrel{*}{\underset{1}{1}} & \text{dE/ck trk} \\ & \text{o} \\ & \text{trk} \\ & \text{dE/ck trk} \\ \text{dE/ck trk} \\ (e, \mu) & 1-2 \mu \\ & 2 \gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. } vtx + jet \end{array} $	1 jet - - - - - - - - - - - - - - - - - - -	Yes Yes · · · Yes ·	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\vec{x}_1^a 270 GeV \vec{x}_1^a 495 GeV \vec{x} 850 GeV \vec{x} 850 GeV \vec{x} 537 GeV \vec{x}_1^a 537 GeV \vec{x}_1^a 1.0 TeV \vec{x}_1^a 1.0 TeV	$\begin{array}{l} m \tilde{\epsilon}_{1}^{*}\rangle \cdot rr(\tilde{\epsilon}_{2}^{*}) \sim 160 \ \mbox{MeV}, r(\tilde{\epsilon}_{1}^{*}) = 0.2 \ \mbox{ns} \\ m \tilde{\epsilon}_{1}^{*}\rangle \cdot rr(\tilde{\epsilon}_{2}^{*}) \sim 160 \ \mbox{MeV}, r(\tilde{\epsilon}_{1}^{*}) = 0.2 \ \mbox{ns} \\ m \tilde{\epsilon}_{1}^{*}\rangle = 100 \ \mbox{GeV}, \ 10 \ \mbox{ms} - r(\tilde{\epsilon}_{1}^{*}) < 15 \ \mbox{ns} \\ m \tilde{\epsilon}_{1}^{*}\rangle = 100 \ \mbox{GeV}, \ 10 \ \mbox{ms} - r(\tilde{\epsilon}_{1}^{*}) < 100 \ \mbox{ns} \\ 10 \ \mbox{ms} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{ms} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 100 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{GeV}, \ r > 10 \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{GeV}, \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{GeV}, \ \mbox{ns} \ \mbox{ns} \\ 10 \ \mbox{cm} / r^{*} = 10 \ \mbox{ms} \ \mbox{ns} \ \$	1310.3875 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162	
NdH	$ \begin{array}{l} LFV\;\rho_{P}\!\!\rightarrow\!$	$r = e \mu, e \tau, \mu \tau$ $2 e, \mu$ (SS) $\mu \mu \nu = 4 e, \mu$ $\tau = 3 e, \mu + \tau$ $0 = 4 + \tau$ $0 = 4 + 1 - \mu$ $1 e, \mu$ $8 = 1 e, \mu$ $8 = 0 - 2 e, \mu$	- 0-3 k - - 5 large- <i>R</i> je 5 large- <i>R</i> je 10 jets/0-4 -10 jets/0-4 2 jets + 2 k	· Yes Yes ts· ts· ts· ts· ts· ts· ts·	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	\$\vec{x}\$ \$\vec{x}\$ <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-054 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094</td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-054 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094	
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{k}_1^0$	0	2 c	Yes	20.3	2 510 GeV	m(² ² ₁)<200 GeV	1501.01325	
	*Only a selection of the available mass limits on new 10 ⁻¹ 1 Mass scale [TeV] 32								

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

the complementary search using the **Recursive Jigsaw Reconstruction (RJR) techniques** in the construction of a discriminating variable set ('RJR-based search'). By using a dedicated set of selection criteria, the RJR-search improve the sensitivity to supersymmetric models with small mass splittings between the sparticles (models with compressed spectra).

Recursive jigsaw reconstruction

- based on assumption of decay tree
- fix set of rules to resolve combinatorics and unknowns in invisible system
- can form set of variables in the rest frame of each level in the decay tree

SUSY models: good sale in market

□ Simplified Models:

- Not really a model (Br~100%, most masses fixed at high scales)
- Important tool for interpretation
- □ Phenomenological models:
 - pMSSM: captures "most" of phenomenologic features of R-parity conserving MSSM
 - 19 free parameters: M1,M2,M3 ; tan β, μ and m_{A;} 10 sfermion mass parameters; A_t , A_b and A_τ
 - Comprehensive and computationally realistic approximation of the MSSM with neutralino LSP
 - GGM (gravitino)

Complete SUSY models: mSUGRA, GMSB ...

Strong production: 1L

Gluino (squark) masses up to 1.7 TeV (1.0 TeV) are excluded for low neutralino masses (≤ 400 GeV or ≤ 300 GeV)

IHEP made a leading contribution (contact person/ contact editor/approval talks)

ATLAS-CONF-2016-054

Strong production: SS/3L

I Gluino mass <1.4-1.7 TeV and LSP mass < 850-1100 GeV are excluded for gluino pair production. ~b mass < 690 GeV excluded</p>

Strong production: SS/3L

- Gluino mass <1.3 TeV and LSP mass < 1 TeV excluded in RPV scenario.</p>
- Right-handed down squark masses are probed up to md[~]_R ≈ 700 GeV in RPV scenarios.
- IHEP mainly contributed in SR definition and main background estimation in data, Gave approval talks for paper publication.

ATLAS-CONF-2016-052

Strong Production: bjets +MET

- Search for gluinos via stop or sbottom decay
- Final states with ≥3b-jets, MET, no or one lepton (e/µ)
- Signal to BG discrimination based on: Meff, MET, mT
- 7 SRs defined targeting different search scenarios
- Excludes gluino masses up to 1.89 TeV for massless LSP

3rd Generation: stop OL

- Search for stop with 0L+(b)jets+MET (hadronic decay)
- Signal to BG discrimination based on: MET, mT(b), HT
- ~19 SRs defined, targeting specific scenarios and phase space
- Exclusion for m(~t1) < ~820GeV for massless LSP</p>
- For the models of the associated production of DM(χ) with top pairs, with a global coupling of 3.5, mediator masses up to 300 GeV, and χ masses below 40 GeV are excluded

3rd Generation: stop 1L

- Search for stop with 1L+(b)jets+MET
- Signal to BG discrimination based on: MET, mT(b), HT
- ~7 SRs defined, targeting specific scenarios and phase space (~3.3σ excess in DM_low SR)
- Exclusion for m(~t1) < ~830GeV for massless LSP</p>
- The maximal coupling of g = 3.5 is excluded @95% CL for a (pseudo-) scalar mediator mass up to (350) 320 GeV assuming a 1 GeV DM mass.

3rd Generation: stop 2L

- Search for stop with 2L+(b)jets+MET
- Signal to BG discrimination based on: MET, mT2
- ~7 SRs defined, targeting specific scenarios and phase space
- Exclusion for m(~t1) < ~480GeV for massless LSP</p>
- For the models of the associated production of DM with top pairs, mediator mass < 330 GeV and DM particle mass < 20 GeV excluded</p>

ATLAS-CONF-2016-066

Strong Production: photon +jets +MET

- Search for gluinos with photon +jets +MET FS (GGM)
- Signal to BG discrimination based on: Meff, MET
- 2 SRs defined targeting different search scenarios
- Excludes gluino masses up to 1.8 TeV for for a large range of neutralino masses, increasing to 2 TeV in the case of a high mass neutralino

Strong Production: Z(II)+MET

Search for gluinos with a Z + jets + MET signature

- There is an excess (3σ) at ATLAS Run1 (not at CMS): obs. 29, exp. 10.8+-2.2
- Check it with Run2 using run1-like SR: Z (II), 2jets, MET>225 GeV, HT>600 GeV
- a mild excess seen in Run2: obs. 21, exp. 10.4+-2.4 (2.2σ in intermediate MET)
- Excludes gluino masses up to 1.1 TeV

ATLAS-CONF-2015-082

RPV: multi-jets

- Search for gluinos with RPV decays to quarks
- Signal to BG discrimination based on: sum mass of jets
- 4 SRs defined targeting different search scenarios
- In the gluino cascade decay model, gluinos with masses up to 1000-1550 GeV are excluded, depending on the neutralino mass
- In the gluino direct decay model, gluinos with masses up to 1080 GeV are excluded.

46

For the 13 TeV ATLAS searches, we utilize each of these classes:

• Missing energy-type:

- Missing transverse momentum: $E_{\rm T}^{\rm miss}$ and $\vec{p_{\rm T}}^{\rm miss}$
- Missing transverse momentum significance: $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$
- RJigsaw *H*-scale for 1 visible, 1 invisible state: $H_{1,1}^{PP}$
- Energy scale-type:
 - Effective mass: $M_{\rm eff} = \sum p_{\rm T} + \sum +E_{\rm T}^{\rm miss}$ leptons • Scalar sum of visible momenta: $H_{\rm T}$, • Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}(1-\cos(\Delta\phi(\vec{p_{\rm T}}^{\rm miss},\ell)))}$
 - RJigsaw H-scale: H^{PP}_{2,1}, H^{PP}_{4,1}
 - RJigsaw ISR p_T scale: |p_{TS}^{ISR}|
- Energy structure-type:
 - Jet multiplicity: N_{jet} , N_{b-jet}
 - Total jet mass: $M_{\rm J}^{\Sigma} = \sum m^{\rm jet}$
 - Angular distributions: $\Delta \phi_{\min}^{4j} = \min(|\phi_{\text{any-jet}} \vec{p_T}^{\text{miss}}|) > 0.4$
 - Aplanarity: $A = (3/2)\lambda_3$
 - QCD E_{T}^{miss} alignment: Δ_{OCD}

(Similar to E_T^{miss}

(also considering only first 4 jets)

(b-quarks can also replace the lepton)

(Similar to $M_{\rm eff}$)

(sum pT of ISR jets

(also considering only first 4 large-radius jets)

(for all 0ℓ selections)

(signed asymmetry between E_T^{miss} and jet azimuthal directions)

pMSSM Interpretations

Study the impact of the full set of ATLAS SUSY searches on the pMSSM.

Use 19-parameter pMSSM

- Minimal flavor violation with no new source of CP violation
- Degenerate 1st and 2nd generation squarks and sleptons
- No RPV and the LSP is the X⁰₁

 500×10^{6} models in the pMSSM are randomly sampled. 300×10^{3} models survive theory and non-LHC constraints (precision EW, LEP, Higgs, DM)

22 ATLAS Run 1 RPC SUSY searches are reinterpreted in the pMSSM \Rightarrow 200 SR!

Best expected SR used for exclusion.

Makes full use of ATLAS simulation, reconstruction and analysis.

>30 \times 10⁹ events generated for truth-based analysis.

>600×10⁶ events simulated & reconstructed.

Most comprehensive results from ATLAS on SUSY to date

Analysis

0-lepton + 2-6 jets + E_T^{miss} 0-lepton + 7–10 jets + E_T^{miss} 1-lepton + jets + E_T^{miss} $\tau(\tau/\ell) + jets + E_T^{miss}$ SS/3-leptons + jets + E_T^{miss} 0/1-lepton + 3b-jets + E_{T}^{miss} Monojet 0-lepton stop 1-lepton stop 2-leptons stop Monojet stop Stop with Z boson 2b-jets + E_T^{miss} $tb+E_T^{miss}$, stop ℓh 2-leptons $2 - \tau$ 3-leptons 4-leptons Disappearing Track Long-lived particle $H/A \rightarrow \tau^+ \tau^-$ 48

pMSSM Interpretations

ATLAS JHEP 10 (2015) 134

Good agreement with simplified models. Diagonal excluded by mono-jet analysis. Intermediate sparticles reduce exclusion for heavy \tilde{g} .

Higgs mass constraint excludes light \tilde{t}_1 models. Heavy \tilde{t}_1 models with long-lived $\tilde{\chi}_1^{\pm}$ excluded by disappearing track analysis.

Good agreement with simplified models.

49 9 0

- Highest sensitivity to strong processes.
- Simplified models ↔ pMSSM models (some differences observed).
- Good complementarity between different searches and with direct detection experiments (see paper for details).

SUSY Introduction

Solve hierarchy problem without "fine tuning"

 SUSY contributions to Higgs mass cancel SM contributions

Unification of gauge couplings

 New particle content changes running of couplings

Provide Dark Matter candidate

 Lightest SUSY particle (LSP) can be stable and only weekly interacting

log., (Q/GeV)

Some of the arguments are most convincing for SUSY particles at ~TeV scale

log10(Q/GeV)