

Vector boson production in association with jets from CMS

Fengwangdong Zhang

on behalf of CMS collaboration

Peking University & Université Libre de Bruxelles

2nd CLHCP Workshop

Beijing, China 2016/12/17 – 2016/12/19

Outline

- Standard Model Public Results from CMS <u>http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP</u>
- Many experimental results on V+jets subjects, here only focus on:
- > 8 TeV (Lumi = 19.6 ~ 19.8 fb⁻¹, BX = 50 ns, average pileup = 20):
 - Z boson + jets
 - W boson + jets
 - Photon (γ) + jets
 - W/Z boson + heavy flavor quark jets
 - □ W boson + b quark jets
 - □ Z boson + c/b quark jets

Data taken during 2012 (Runl)

Motivations on V+jets physics

- One can probe different aspects of perturbative QCD with V+jets processes
- Precise understanding and modeling of QCD interactions is crucial for LHC discovery potential and precision measurements:
 - W/Z+jets is a dominant background for:
 - Top-quark measurements
 - Precision measurement of Higgs physics in VH(->bb) channel
 - It is important for the modeling of the production mechanism involved in new physics searches (e.g. Supersymmetry)

Z+jets as background to new physics searches:

- Z(->vv)+jets in SUSY (MET+jets) searches
- Exploit NLO computations of W+jets/Z(->vv)+jets or γ+jets/Z(->vv)+jets ratios to calculate the transfer functions from W/γ +jets to Z(->vv)+jets
 - \checkmark important to constrain theory extrapolation with data

JHEP 10 (2012) 018 PRD 90, 052008 (2014) arXiv:1405.7875

The strategy of V+jets analyses

W/Z bosons are reconstructed through their leptonic decays

- Muons and electrons are reconstructed using Particle Flow algorithm based on the information from detector subsystems
- Neutrinos are identified using missing transverse momentum
- > Jets are defined with the anti-kt algorithm using size R = 0.5
 - ◆ Jets are reconstructed using Particle Flow algorithm
 - Jets are separated from the W/Z boson decay leptons (R > 0.5)
 - Pileup subtraction is implemented in the isolation definition of the jets
 - Heavy flavor (c/b) jets are tagged for the dedicated analyses
- Restrict the measurement phase space for a good acceptance
- Use Monte Carlo methodology to correct for detector effects on the signal extracted from data
- Compare the unfolded data (measurement) with different theoretical predictions of cross sections at particle level, including the differential cross section as a function of various observables
 - □ Compared theoretical predictions can be at different accuracy levels

Data statistics for W/Z + jets measurement

- Measured differential cross section as a function of several observables
- Significant statistics up to large jet multiplicity for both W/Z + jets

Theoretical predictions for W/Z + jets cross section comparison

- > MADGRAPH5 + PYTHIA6
- LO matrix element up to 4 partons in final state
- kt-MLM merging
- CTEQ6L1 PDF

> MADGRAPH5_AMC@NLO + PYTHIA8

- NLO matrix element up to two partons, LO accuracy for 3 partons
- FxFx jet merging, NNPDF3.0 NLO PDF, CUETP8M1 PYTHIA8 tune g
- SHERPA + BLACKHAT
- NLO accuracy up to two partons, LO accuracy for 3~4 partons
- MEPS@NLO merging, CT10 PDF
- BLACKHAT + SHERPA
- NLO W + n jet(s) with fixed order (n = $1 \sim 4$)
- CT10 PDF set
- Correction for hadronization and multiple parton interactions
- N-jettiness NNLO (W+1jet fixed order)
- Correction for hadronization and multiple parton interactions using MG5+PYTHIA6
- CT14 NNLO PDF set
- Reference: PRL.115.062002; arXiv:1602.06965

Z + jets differential cross section results

- MG5_aMC+PY8 differs at large jet multiplicities due to limited number of partons in matrix element calculation (only relying on parton shower)
- > Discrepancy with LO computation has disappeared with NLO calculation for leading jet p_T

Rapidity correlation measurement of Z + jets

The measurement of jet angular correlation of Z+Jets can help understand QCD process much more accurately

 $y_Z + y_{jet}$ Depends mainly on parton density functions $y_{sum} =$ $y_Z - y_{jet}$ Reflects the leading order partonic differential cross section $y_{diff} =$ /#// Data arXiv:1611.03844 19.6 fb⁻¹ (8 TeV) 19.6 fb⁻¹ (8 TeV) MG5 + PY6 (≤ 4j LO + PS) $d_{iff}(Z,j_1)$ MG5 + PY6 (≤ 4i LO + PS SHERPA 2 (≤ 2j NLO 3,4j LO + PS) CMS SHERPA 2 (≤ 2j NLO 3,4j LO + PS CMS MG5_aMC + PY8 (≤ 2j NLO + PS) MG5 aMC + PY8 (≤ 2j NLO + PS) Submitted to JHEP 1/a da/dy 10-1 10 LO calculation fails to describe \triangleright 10^{-2} 10-2 the shape, confirms the anti-k_T (R = 0.5) jets anti-k_T (R = 0.5) jets 10⁻³ $p_{-}^{jet} > 30 \text{ GeV}, |y_{-}^{jet}| < 2.4$ p_^{jet} > 30 GeV, |y^{jet}| < 2.4 observation at 7 TeV: $Z/\gamma^* \rightarrow II$ channel $Z_{\nu}^{\dagger} \gamma^{*} \rightarrow II channel$ 1.5 10.1103/PhysRevD.88.112009 MG5/Data 0 **Discrepancy with LO** 0.5E 0.5 Stat. unc. Stat. unc. computation has disappeared SHERPA/Data 1.5E 1.5 with NLO accuracy! 0.5 0.5E Stat. unc. Stat. unc. aMC/Data 1.5 1.5 NG5 0.5 0.5 Stat. 🔤 ⊕ theo. 🔲 ⊕ PDF ⊕ α_s unc Stat. $\blacksquare \oplus$ theo. $\square \oplus PDF \oplus \alpha_s$ unc.

1/o do/dy_{sum}(Z,j₁)

MG5/Data

SHERPA/Data

aMC/Data

MG5

ō

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

² ^{2.2} ^{2.4} y_{sum}(Z,j₁) 0

The observed discrepancy of LO prediction helps us to analyze whether it comes from the matching procedure between matrix element and parton shower

2.2 2.4 y_{diff}(Z,j₁)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Azimuthal correlation & Multidimensional cross section of Z + jets

- > No apparent discrepancy with LO and NLO predictions for the azimuthal correlation observables
- > The multidimensional differential cross section with respect to jet p_T and rapidity is also measured precisely, good agreement with theoretical predictions ⁹

W + jets differential cross section results

Angular correlation measurement of W+jets

- Discrepancies at large rapidity difference between jets and in small azimuthal angle difference between muon and leading jet
- MG5_aMC+PY8 describes the measured angular correlations best

arXiv:1610.04222 Submitted to PRD

Z + jets & γ + jets cross section ratio

- Precise measurement of this ratio provides important information about the higher order effects of logarithmic corrections at higher transverse momentum
- It helps to reduce the systematical uncertainties corresponding to the Z(->vv)+jets background estimation in SUSY searches

> The observed ratio increases gradually and saturates around 300~350 GeV of p_T :

 \geq

- The main distinctions between two processes are mass difference and different coupling
- Both MadGraph (LO) and BlackHat (fixed NLO) reproduce the shape of distribution in general¹²

W/Z + heavy flavor jets (b/b) measurement

- Theoretical uncertainties on W/Z + heavy flavor jets larger than for light jets case
 - Heavy quark content in the proton
 - Modeling of gluon splitting (initial state or final state)
 - Massive or massless b quark in computations
- Important process for backgrounds of Higgs measurements
- Test of QCD predictions with various implementations (LO + Multipartons + parton shower, NLO, NLO+PS)
- Descriptions of "b-quark initiated processes:"
 - ◆ 4 flavors number scheme (4FS): b quark generated with gluon splitting
 - ◆ 5 flavors number scheme (5FS): b quark (massless) generated in the initial state

W+bb cross section measurement

Z+b jets cross section measurement

- Discrepancy of about 20% is observed for 4FNS-based LO prediction
- The 5FS-based predictions (LO & NLO) slightly overshoots the data at small transverse momentum of b jet (20%~25%)
- Powheg NLO prediction is implemented with "Multi-scale Improved NLO" (MINLO):
 - 10.1007/JHEP10(2012)155

Z+c jets cross section measurement

- The predictions with MADGRAPH LO and MG5_aMC predictions successfully reproduce the measurement in general
- The MCFM predictions are in good agreement for the p_T region above 40 GeV

The measured Z + c-flavor-jet production cross section: 8.6 ± 0.5 (stat.) ± 0.7 (syst.) pb

The measured cross section ratio of Z+c to Z+b:
2.0 + 0.2 (stat) + 0.2 (syst) pb

2.0 \pm 0.2 (stat.) \pm 0.2 (syst.) pb

Outlook

- > The measurement on vector boson plus jets processes is quite important:
 - It deepens our understanding on QCD dynamics
 - It improves the modeling of background for Higgs measurement and new physics searches
- There have been significant improvement on theoretical predictions and experimental measurements:
 - Reach high precision of measurement
 - Better agreement with higher order (NLO) calculation than LO in general
 - Remained discrepancy and large uncertainty motivate the ongoing work to improve modeling and precision
- More results at both 8 TeV and 13 TeV will come out soon!

Measurements of W/Z + jets at 13 TeV from CMS will be presented tomorrow by Qun Wang!

Backup

V+jets predictions on Monte Carlo evolution

- There are still theoretical uncertainties related to various sources which can be constrained by data:
 - Higher order QCD corrections (NNLO)
 - Electroweak corrections
 - Parton shower and its matched matrix element
 - Parton density functions
 - Underlying event modeling (multiple parton interactions)

Legend of V+jets (Run I)

Good agreement between experimental measurement and theory for Run I
High precision up to very low cross section (high jet multiplicity)

Z + jets differential cross section results

 \square *H*_T is the scalar sum of the *p*_T of jets

Rapidity correction measurement of Z + jets

Discrepancy is also seen when taking into account the second jet, while it is less than the >case of leading jet with Z boson

Rapidity correction measurement of Z + jets

The discrepancy with LO prediction decreases significantly when requiring the Z boson p_T larger than 150 GeV 23

Z + \geq 1 jet cross section as function of Z boson p_T

- K_{NNLO}: Z+>=0 jet cross section rescaled to NNLO value from FEWZ
- MG5+Pythia6 comparison is flat until around 200 GeV and up to about 30% discrepancy, which is same for Z+ ≥ 2 jets case
- BLACKHAT reproduces the shape of data in the same region

Z+≥1 jet & Z+≥2 jets cross section ratio as function of Z p_T

The ratio increases until reaching around 350 GeV before a plateau

- SHERPA underestimates the relative rate of inclusive 2 jets case
- BLACKHAT overestimates the ratio after around 100 GeV

$Z + \ge 3$ jets cross section ratio as function of $Z p_T / HT$

- This observable allows to test validity of NLO estimation, which might reach computational limit due to large logarithms or missing higher order effects may play a larger role
- Events in the high-end tail contribute to signatures with a high E_T/HT ratio for hadronic new physics searches

- MG5 generally predicts best on the shape
- SHERPA shows discrepancy on shape and rate
- BLACKHAT performs well on the bulk of distribution while failing to reproduce the tails

Photon (γ) + jets cross section at 8 TeV

W + jets differential cross section results

W + jets differential cross section uncertainties

> Only the decay channel of $W(->\mu v)$ + jets is measured

The dominant uncertainty comes from the jet energy scale variations

CMS-SMP-14-023 Submitted to PRD

W/Z + heavy flavor jets (b/\bar{b}) measurement at 8 TeV

- Theoretical uncertainties on W/Z + heavy flavor jets larger than for light jets case
 - Heavy quark content in the proton
 - Modeling of gluon splitting (initial state or final state)
 - Massive or massless b quark in computations
- Test of QCD predictions with various implementations (LO+Multipartons + parton shower, NLO, NLO+PS)
- Important process for backgrounds of Higgs searches

- Descriptions of "b-quark initiated processes:"
- > 4 flavors number scheme (4FN): b quark generated with gluon splitting
- > 5 flavors number scheme (5FN): b quark (massless) generated in the initial state

W+b \overline{b} measurement at 8 TeV

Muon			Electron				Uncertainty	Variation	Effect on the measured
	Initial	Fitted	Initial	Fitted				variation	
Data	7432		7357				tt	3.5%	3.8%
							Single top	5.4%	2.5%
W +bb	1323	1712	1121	1456		ted	W+udscg	13.2%	<2%
$W+c\overline{c}$	60	61	36	37	uo	rela	W+cc	13.2%	<2%
W+udscg	182	179	220	217	zati	cor	Diboson	8.1%	<2%
tī	3049	3296	2640	2864	ilali	۲Ľ	Drell–Yan	7.9%	<2%
Single top	958	1008	820	865	orn		γ +jets	10.0%	$<\!\!2\%$
Drell–Yan	261	265	220	224	Ž		QCD	50%	2–3%
Diboson	175	181	139	144			b tag eff rescaling	8.4%	9.2%
$\gamma+$ jets			98	105		[g	JES rescaling	0–6%	3.8%
QCD	1109	803	1654	1373		elat	UES	0–3%	<2%
Total MC	7116	7505	6948	7284	ape	orre	MES	0–3%	<2%
Signal strength	1.21 ± 0.19		1.37 ± 0.23		Sh		EES	0–3%	<2%
Combined	1.21	1 26 -	+0.17				Id/Iso/Trg	0–4%	<2%
Combined		1.20 _					Luminosity	2	2.6%
							Scales ($\mu_{\rm R}, \mu_{\rm F}$)		10%

CMS-SMP-14-020

- The signal sample is generated at tree-level by MADGRAPH5 interfaced with PYTHIA6
- > The $t\bar{t}$ is the dominant background, which is reweighted by data in the signal free region, in order to predict the transverse mass distribution in the signal region 31

PDF choice

1%

Z+b jets measurement at 8 TeV

- Lepton selection:
- $P_T > 20 \text{ GeV}$
- |η| < 2.4
- ◆ 71 < MII < 111 GeV
- B-tagged jet selection:
- $P_T > 30 \text{ GeV}$

- The signal sample is generated with MADGRAPH5 implementing a matrix element up to 4 partons in the final state, interfaced with PYTHIA6
- > The $t\bar{t}$ is the dominant background, which is also generated with MG5 implementing a matrix element up to 3 partons in the final state

Z+b jets cross section measurement

- Discrepancy of about 30% observed for 4FNS-based LO prediction for Z + b jet case
- The 5FS-based predictions (LO & NLO) slightly overshoots the data at small scalar sum of transverse momenta of b jets (30%~50%)
- Powheg NLO prediction is implemented with "Multi-scale Improved NLO":
 - 10.1007/JHEP10(2012)155

CMS-SMP-14-010 Submitted to EPJC

Z+c jets cross section at 8 TeV

A likelihood estimate of the probability that jet tracks comes from the primary vertex in the pure hadronic decay mode (JP discriminant)

The invariant mass of all the charged particles (including a muon) constituting the secondary vertex in the semileptonic decay mode

Z+c jets cross section at 8 TeV

SMP-15-009

		Semileptonic mode								
	Lepton selection:	Channel	$N_{ m Z+c}^{ m signal}$	$\mathcal{C}_{\mathrm{Z+c}}$ (%)	$\sigma(\mathrm{Z}+\mathrm{c})$ (pb)					
•	p _T > 20 GeV	$Z ightarrow e^+e^-$	1066 ± 95	0.63 ± 0.03	$8.5\pm0.7\pm1.0$					
٠	η < 2.1	$ m Z ightarrow \mu^+ \mu^-$	1449 ± 143	0.81 ± 0.03	$9.0\pm0.7\pm1.0$					
•	71 < M(II) < 111 GeV	Channel	$N_{ m Z+b}^{ m signal}$	\mathcal{C}_{Z+b} (%)	$\sigma(Z+c)/\sigma(Z+b)$					
>	High flavor jet selection:	$Z ightarrow e^+e^-$	2606 ± 114	2.90 ± 0.08	$1.9\pm0.2\pm0.2$					
•	$P_{\rm T} > 25 {\rm GeV}$	$ m Z ightarrow \mu^+ \mu^-$	3241 ± 147	3.93 ± 0.10	$2.2\pm0.3\pm0.2$					
 η < 2 	η < 2.5	D^{\pm} mode								
		Channel	$N_{ m Z+c}^{ m signal}$	\mathcal{C}_{Z+c} (%)	$\sigma(Z+c)$ (pb)					
		$Z ightarrow e^+e^-$	275 ± 55	0.13 ± 0.02	$11.0 \pm 2.1 \pm 0.9$					
		$ m Z ightarrow \mu^+ \mu^-$	315 ± 75	0.18 ± 0.02	$9.0\pm2.1\pm0.8$					
		$D^{*\pm}(2010)$ mode								
		Channel	$N_{ m Z+c}^{ m signal}$	\mathcal{C}_{Z+c} (%)	$\sigma(Z+c)$ (pb)					
		$Z ightarrow e^+e^-$	151 ± 31	0.11 ± 0.01	$7.3\pm1.5\pm0.6$					
		$ m Z ightarrow \mu^+ \mu^-$	228 ± 30	0.14 ± 0.01	$8.6\pm1.1\pm0.6$					

Data statistics for W/Z +jets measurement (13TeV)

- Data
- Measured differential cross section as a function of several observables
- The presence of data goes up to large jet multiplicity region for both W/Z + jets

Theoretical predictions for W/Z + jets cross section comparison at 13 TeV

- MADGRAPH5_AMC@NLO + PYTHIA8
- Next leading order multileg matrix element up to two partons in final state, LO accuracy for 3 partons
- FxFx jet merging scheme
- NNPDF3.0 NLO PDF set
- CUETP8M1 PYTHIA8 tune
- NNLO
- NNLO W/Z+1jet with fixed order
- Correction for hadronization and multiple parton interaction computed with MADGRAPH5_AMC@NLO + PYTHIA8
- CT14 PDF set
- References:
 - arXiv:1602.08140
 - arXiv:1512.01291
 - arXiv:1602.06965
 - Phys. Rev. Lett. 115, no.6, 062002 (2015)
- MADGRAPH5 + PYTHIA (only for W+jets)
- Leading order accuracy up to four partons
- KT-MLM merging scheme
- CTEQ6L1 PDF

Z + jets differential cross section at 13 TeV

- Good agreement with multileg NLO and NNLO calculations
- > The p_T , η , H_T of jet for inclusive jet multiplicities up to 3 jets have also been measured
 - \square *H*_{*T*} is the scalar sum of the *p*_{*T*} of jets

Z + jets differential cross section at 13 TeV

Good agreement with both multileg NLO and NNLO calculations

The p_T , η, H_T of jet for inclusive jet multiplicities up to 3 jets have also been measured H_T is the scalar sum of the p_T of jets

W + jets differential cross section at 13 TeV

 $\square H_T \text{ is the scalar sum of the } p_T \text{ of jets}$

W + jets differential cross section at 13 TeV

Agreement is improved significantly with multileg NLO and NNLO calculations