Search for the ttH Production in Multilepton Final States with the ATLAS Detector

Chao Wang

Shandong University

CLHCP Dec. 18th, 2016

Motivation

2

$t\bar{t}H$ in 13 TeV

Higgs Boson	(125GeV)	Production	at	LHC
--------------------	----------	------------	----	-----

Cross section (pb)			Cross Section(pb) at 13TeV		
at $\sqrt{s} = 8$ ((7) TeV		ggF	43.92	
ggF	19.52 (15.32)		VBF	3.748	
WH WH	1.58 (1.22) 0.70 (0.57)	A factor of	WH	1.380	
ZH	0.39 (0.31)	4 in 13 TeV	ZH	0.8696	
tĪH	0.13 (0.09)		ttH	0.5085	
Total	22.32 (17.51)				

Cross section (fb) @NLO	tīH	tŦW	tīZ	tī (NNLO)
8 TeV	133	232	206	2,53E+05
13 TeV	507	566	760	8,32E+05
13 TeV / 8TeV	3.8	2.4	3.7	3.3

Backgrounds increase at a comparable rate in the signal regions

ATLAS Run 2 ttH results in ICHEP with total luminosity of 13.2 fb-1 ATLAS-COM-CONF-2016-066

t*t*H Signal Channel

Multi-Lepton Final States

2 same-sign light leptons, τ veto (2lss) \geq (at least 5 jets and at least 1 bjet) W (2lss+1τ) \geq 2 same-sign light leptons + 1 opposite-sign τ \mathcal{M} W (at least 4 jets and at least 1 bjet) h⁰ Уt 3 light leptons with total charge ± 1 (3I) W \geq mm $(\geq 4 \text{ jets}, \geq 1 \text{ bjet}, \text{ or } 3 \text{ jets}, \geq 2 \text{ bjets})$ 4 light leptons with total charge 0 \geq (41) $(\geq 2jets, \geq 1bjet)$

Higgs boson decay mode $A \times \epsilon$					
Category	WW^*	ττ	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0\tau_{\rm had}$	77%	17%	3%	3%	14
$2\ell 1\tau_{had}$	46%	51%	2%	1%	2.2
3l	74%	20%	4%	2%	9.2
41	72%	18%	9%	2%	0.88

Background for $t\bar{t}H$

Irreducible backgrounds: same final state as the signal (ttW, ttZ, VV) Reducible backgrounds: non-prompt or a fake lepton selected as prompt lepton

Background Composition

Background Estimation

- □ ttW, ttZ -> Simulation
 □ Diboson (VV) -> Simulation
- Non-prompt light leptons -> data control region (fake factor in 2ISS, 3I; ABCD in 2ISS1tau)
- Electron charge misidentification -> data of Z+jets events (likelihood)
- Hadronic tau misreconstruction -> simulation and normalised to data control region.

Validation Plots

- Control region
 - ttW (left plot): selection close to the 2l0τhad signal region, but with low jet multiplicity.
 - ttZ (middle plot): selection close to the 3I signal region, but within Z mass window.
 - WZ+1b-tag (right plot): 3I lepton selection At least one lepton pair |mll 91.2
 GeV| < 10 GeV, and jet requirements

Good modelling in the validation region

Signal Region

• Lepton flavor composition in 2ISSOtau, 2IISS1tau, 3I signal region after fitting (detailed definitions in backup)

Generally, good description by the Monte Carlo

Event Yields

• Cut and count analysis in 6 categories: $2I0\tau(ee,e\mu,\mu\mu)$, $2I1\tau$ had, 3I and 4I

	$2\ell 0 au_{ m had}\; ee$	$2\ell 0 au_{\rm had} \ e\mu$	$2\ell 0 au_{ m had}\ \mu\mu$	$2\ell 1 au_{ m had}$	3ℓ	4ℓ
$t\overline{t}W$	2.9 ± 0.7	9.1 ± 2.5	6.6 ± 1.6	0.8 ± 0.4	6.1 ± 1.3	
$t\overline{t}(Z/\gamma^*)$	1.55 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.6 ± 0.4	11.5 ± 2.0	1.12 ± 0.20
Diboson	0.38 ± 0.25	2.5 ± 1.4	0.8 ± 0.5	0.20 ± 0.15	1.8 ± 1.0	0.04 ± 0.04
Non-prompt leptons	12 ± 6	12 ± 5	8.7 ± 3.4	1.3 ± 1.2	20 ± 6	0.18 ± 0.10
Charge misreconstruction	6.9 ± 1.3	7.1 ± 1.7	_	0.24 ± 0.03		—
Other	0.81 ± 0.22	2.2 ± 0.6	1.4 ± 0.4	0.63 ± 0.15	3.3 ± 0.8	0.12 ± 0.05
Total background	25 ± 6	38 ± 6	20 ± 4	4.8 ± 1.4	43 ± 7	1.46 ± 0.25
$t\bar{t}H$ (SM)	2.0 ± 0.5	4.8 ± 1.0	2.9 ± 0.6	1.43 ± 0.31	6.2 ± 1.1	0.59 ± 0.10
Data	26	59	31	14	46	0

Expected and observed yields in the six signal regions

Pre-fit background and signal predictions and observed data yields for each signal region

Agreement between Data and MC is fine overall

8

Fit Result and Systematic

The best-fit value of μ (combining all channels) is 2. 5 \pm 0. 7 (*stat*)^{+1.1}_{-0.9}(*syst*) Systematic are dominant, main source are come from fake and QmissID

Observed significance: 2.2 sigma (1.3 expected from SM)

Expected and Observed Limits

Category	Best fit $\mu_{t\bar{t}H}$	Observed (expected)	Signal-injected
		95% CL upper limit	95% CL upper limit
$2\ell 0 au_{ m had}$	$4.0^{+1.2}_{-1.1}{}^{+1.7}_{-1.3}$	7.8 (3.5 + 1.7) - 1.0)	4.2
$2\ell 1\tau_{\rm had}$	$6.2^{+2.8}_{-2.3}{}^{+2.3}_{-1.4}$	$12.9(5.9^{+2.9}_{-1.6})$	6.3
3ℓ	$0.5 \stackrel{+1.2}{_{-1.0}} \stackrel{+1.2}{_{-1.3}}$	$3.9(3.5^{+1.5}_{-1.0})$	4.3
4ℓ	< 2.2 (68% CL)	$5.2 (6.6 {+2.9 \atop -1.4})$	7.4
Combined	$2.5 \substack{+0.7 \ +1.1 \\ -0.7 \ -0.9}$	$4.9(2.3^{+1.1}_{-0.6})$	3.1

95% CL upper limit on ttH signal strength: 4.9 (2.3 expected from bkg-only)

Conclusions

A search for ttH production process has been performed ttH (multilepton) using 13.2 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV, recorded by the ATLAS experiment

- \checkmark The best fit value of the ttH signal strength is 2.5 \pm 0.7
- ✓ Observed significance: 2.2 sigma (1.3 expected from SM)
- ✓ 95% CL upper limit on ttH signal strength: 4.9 (2.3 expected from bkg-only)

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H, H \to \gamma\gamma$	-0.2	0.9	
$t\bar{t}H,H\to(WW,\tau\tau,ZZ)$	2.2	1.0	
$t\bar{t}H, H \to b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

Better precision with new tunes on full 2015 + 2016 dataset

Thank you for your attention!

Backup


```
Expected ICHEP 2016 dataset
```

Object definition (loose) and overlap removal

trigger selection (unprescaled single lepton triggers)

- 2015: HLT_e24_Ihmedium_L1EM20VH || HLT_e60_Ihmedium || HLT_e120_Ihloose || HLT_mu20_iloose_L1MU15 || HLT_mu50
- 2016: HLT_e24_lhtight_nod0_ivarloose || HLT_e60_lhmedium_nod0 || HLT_e140_lhloose_nod0 || HLT_mu24_ivarmedium || HLT_mu50

electron:

- *p*_T > 10 GeV
- $\ \ \, |\eta|<{\rm 2.47\,without\,crack}$
- LooseAndBLayerHit identification WP (95 %)
- $|z_0 \cdot \sin \theta| < 0.5 \,\mathrm{mm}$
- $|d_0/\sigma(d_0)| < 5$
- Loose isolation WP

jet and b-tagging

- anti- k_t with R = 0.4
- p_T > 25 GeV
- |η| < 2.5
- rejected if |JVT|< 0.59 with p_T < 60 GeV & |η| < 2.4
- B-tagging: 70 % efficiency WP (MV2C10)

muon:

- *p*_T > 10 GeV
- |η| < 2.5
- Loose ID WP
- $|z_0 \cdot \sin \theta| < 0.5 \,\mathrm{mm}$
- $|d_0/\sigma(d_0)| < 3$
- Loose isolation WP

hadronic tau:

- *p*_T > 25 GeV
- |η| < 2.5
- *N*_{prong} = 1||3
- charge of ±1
- medium BDT ID WP
- pass elec-OLR

overlap removal (ASG, MuJetPtRatio & MuJetTrkPtRatio off)

Keep	Remove	Cone size (Δ R) or track
electron	tau	0.2
muon	tau	0.2
electron	CaloTagged muon	shared track
muon	electon	shared track
electron	jet	0.2
jet	electron	0.4
muon	jet	(0.2 or ghost-matched to muon) and (numJetTrk \leq 2)
jet	muon	0.4
tau	jet	0.2

Object definition (tight in 2ISS, 2ISS+1 τ and 3 ℓ) and OLR

electron:

- *p*_T > 25/20/15 GeV
- $|\eta| < 1.37 \text{ for } 2\ell \text{ss}$
- TightLH identification
 WP
- $|z_0 \cdot \sin \theta| < 0.5 \,\mathrm{mm}$
- $|d_0/\sigma(d_0)| < 5$
- FixedCutTight isolation

muon:

- *p*_T > 25/20/15 GeV
- $\mid \eta \mid$ < 2.5
- Loose ID WP
- $|z_0 \cdot \sin \theta| < 0.5 \,\mathrm{mm}$
- $|d_0/\sigma(d_0)| < 3$
- FixedCutTightTrackOnly isolation WP

hadronic tau:

- p_T > 25 GeV
- |η| < 2.5
- N_{prong} = 1||3
- charge of ±1
- medium BDT ID WP
- pass elec-OLR

jet and b-tagging

- anti- k_t with R = 0.4
- *p*_T > 25 GeV
- $\blacksquare |\eta| < 2.5$
- rejected if |JVT|< 0.59 with p_T < 60 GeV & |η| < 2.4
- B-tagging: 70 % efficiency WP (MV2C10)

overlap removal (ASG, MuJetPtRatio & MuJetTrkPtRatio off)

Keep	Remove	Cone size (Δ R) or track
electron	tau	0.2
muon	tau	0.2
electron	CaloTagged muon	shared track
muon	electon	shared track
electron	jet	0.2
jet	electron	0.4
muon	jet	(0.2 or ghost-matched to muon) and (numJetTrk \leq 2)
jet	muon	0.4
tau	jet	0.2

Channel Definition

Channel	Leptons	Hadronic Taus	Jets	B-Tags	Lepton flavour	Trigger match
	==2					at least one
	$\Sigma Q_{lep} = \pm 2$				ee	trigger matched
2ℓss	$p_T^{lead} > 25 \text{ GeV}$	== 0	≥5	≥1	еµ	lepton with
	$p_T^{sub} > 25 \text{ GeV}$				$\mu\mu$	$p_T > 25 \text{GeV}$
	$ \eta^{elec} < 1.37$					(21 GeV for muon in 2015)
	==3					at least one
	$\Sigma Q_{lep} = \pm 1$	-	Njet 2	≥ 4 & N _b ≥ 1	-	trigger matched
30	ℓ 1 & ℓ 2: Tight, $p_T >$ 20 GeV (*)			or		lepton with
50	ℓ 0: Loose, p_T > 10 GeV (*)		Njet =	= 3 & N _b ≥ 2		$p_T > 25 \text{GeV}$
	<i>M</i> _{II,05−SF} - 91.2 GeV > 10 GeV					(21 GeV for
	M _{11,05-SF} > 12 GeV					muon in 2015)
	<i>M</i> _{III} - 91.2 GeV > 10 GeV					
	==4					
	р _т >10 <i>GeV</i>					
4ℓ	Loose def + Gradient Iso					at least one
	$\Sigma Q_{lep} = 0$	-	≥ 2	≥1	-	trigger matched
	<i>M</i> _{II,05-SF} - 91.2 GeV > 10 GeV					lepton with
	$M_{II,OS-SF} > 12 \text{ GeV}$					$p_T > 25 \text{GeV}$
	M _{4/} within [100, 350] GeV					(21 GeV for
	M_{4I} veto \pm 5 GeV around M_H = 125.0 GeV					muon in 2015)
	==2					at least one
	$\Sigma Q_{lep} = \pm 2$	== 1			-	trigger matched
$2\ell ss+1\tau_{had}$	$p_{T,lep}^{lead} > 25 \text{ GeV}$	$Q_{\tau} = -Q_{lep}$	≥4	≥1		lepton with
	$p_{T,lep}^{sub} > 15 \text{ GeV}$					$p_T > 25 \text{GeV}$
	<i>M</i> _{εε} - 91.2 GeV > 10 GeV					(21 GeV for muon in 2015)
$2\ell ss + 1\tau_{had}$	$p_{T,lep}^{lead} > 25 \text{ GeV}$ $p_{T,lep}^{sub} > 15 \text{ GeV}$ $ M_{ee} - 91.2 \text{ GeV} > 10 \text{ GeV}$	$Q_{\tau} = -Q_{lep}$	≥4	≥1		lepton with $p_T > 25 \text{ GeV}$ (21 GeV for muon in 2015)

* in 3 ℓ channel: ℓ 0 is lepton with opposite charge to ℓ 1 and ℓ 2. ℓ 1 is closest in distance to ℓ 0.

Contribution of each Higgs decay in the most sensitive signal regions

Channel	Region	WW	ττ	ZZ	bb	YY
II	all-hadronic	-		0.000		100%
$H \rightarrow \gamma \gamma$	leptonic	-	-	-		100%
	2lSS ee	76%	17%	2%	4%	-
	2ℓSS eµ	77%	17%	3%	3%	-
$H \to (WW, \tau\tau, ZZ)$	$2\ell SS \mu\mu$	79%	17%	3%	1%	-
	$2\ell SS + \tau_{had}$	46%	51%	2%	1%	-
	3ℓ	74%	20%	4%	1%	-
	4ℓ	72%	18%	9%	<u>a</u>	_
	ℓ +jets (\geq 6j,3bj)	5%	1%	1%	90%	-
	ℓ +jets (5j, \geq 4bj)	-	-	-	99%	-
$H ightarrow b ar{b}$	ℓ +jets ($\geq 6j$, $\geq 4bj$)	1%	-	1%	97%	_
	dilepton (\geq 4j,3bj)	6%	1%	1%	90%	-
	dilepton ($\geq 4j, \geq 4bj$)	-	-	-	98%	-

estimation using fake factors (assume stability with jet multiplicity)

$$\theta_{\ell} = \frac{N_{\ell\ell}}{N_{\ell\ell}} (\leq 4jets) = \frac{N_{\ell\ell}^{\text{Data}} - N_{\ell\ell}^{\text{Prompt ss}} - N_{\ell\ell}^{\text{QMisld}}}{N_{\ell\ell}^{\text{Data}} - N_{\ell\ell}^{\text{Prompt ss}} - N_{\ell\ell}^{\text{QMisld MC}}}$$

predict fake yields in *ee*, $e\mu$ and $\mu\mu$ signal regions:

$$N_{\ell\ell} (\geq 5 \text{jets}) = \theta_{\ell} \cdot N_{\ell\ell} (\geq 5 \text{jets})$$

closure test in $e\mu(\leq 4jets)$: $\frac{Data}{Pred.} = 1.15 \pm 0.10(\frac{stat.}{data}) \pm 0.22(fakes, QMisId)$ apply fake factors from $2\ell ss$ on ss leptons in 3ℓ signal region

$$\mathsf{N}_{\mathsf{x}\ell\ell} = \theta_\ell \cdot \mathsf{N}_{\mathsf{x}\ell\mathfrak{f}}$$

Fakes in 2ISS1tau and 4I

2lSS1tau

4

- data-driven fake estimates from 2D side-band method (ABCD, A=SR)
- Event yields in regions A, B, C and D:

 Prompt events subtracted from data, correction factor is applied to deal with tau compositions in signal region

 $k_{\rm corr}=1.02\pm0.29$

- systematic uncertainties:
 - MC closure test
 - QMisld systematic
 - MC truth bias statistics

estimate of fake processes in SR:

 $N_{\text{fake}}^{\text{A}} = rac{N_{\text{Data-MC-QMisID}}^{\text{C}}}{N_{\text{Data-MC-QMisID}}^{\text{D}}} N_{\text{Data-MC-QMisID}}^{\text{B}} \cdot k_{\text{corr}}$

- Principle: two categories of fake source:
 - Z-like: fake leptons (mostly) coming from light-jets
 - top-like: fake leptons (mostly) coming from b-jets

$$N_{\text{Data}}^{f,\text{CR}} - N_{\text{others}}^{f,\text{CR}} = \lambda_b^f \cdot N_{t\bar{t}}^{f,\text{CR}} + \lambda_l^f \cdot N_{Z+\text{jets}}^{f,\text{CR}}$$

	2 tight	1 tight and
	leptons	1 loose lepton
$N_{\rm jet} \ge 4$	A=SR	В
$N_{\rm jet} = 2 3 $	C	D

20