ALICE ITS Upgrade

Yaping Wang Central China Normal University

Introduction

CENTRAL CHINA NORMAL UNIT

- ALICE ITS Upgrade & Efforts from China
- Summary and Outlook

Introduction – ALICE Experiment at LHC

ALICE (A Large Ion Collider Experiment) is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC.

ALICE ITS Upgrade @ CLHCP2016, Yaping Wang (CCNU)

The ALICE collaboration prepares a major upgrade for LHC LS2 (2019-2020): High precision measurement of rare probes from high to very low transverse momentum.

Target for upgrade program (Run3 + Run4) \diamond Pb-Pb recorded luminosity $\geq 10 \text{ nb}^{-1} \rightarrow 8 \times 10^{10} \text{ events}$ \diamond pp@5.5 TeV recorded luminosity $\geq 6 \text{ pb}^{-1} \rightarrow 1.4 \times 10^{11} \text{ events}$

1. Upgrade detectors, readout systems and online systems

Read out all Pb-Pb interactions at a maximum rate of 50 kHz (i.e. L=6×10²⁷ cm⁻²s⁻¹), with a minimum bias trigger

Gain a factor of 100 in statistics over originally approved program (Run1 + Run2)

2. Significant improvement of vertexing and tracking capabilities at low p_T \diamond New silicon trackers (Inner Tracking System, Muon Forward Tracker)

ALICE ITS Upgrade -- Design Objectives

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39 mm ⇒23 mm (layer 0)
- Reduce beam pipe radius: 29mm ⇒18.2 mm
- Reduce material budget: ~1.14% ⇒ ~ 0.3% (for inner layers)
- Reduce pixel size: 50mm × 425mm ⇒ 29 µm × 27 µm
- 2. Improve tracking efficiency and p_{T} resolution at low p_{T}
- Improved integration time: ~10 µs
- Increase granularity and radial extension:
 - 6 layers (2 SPDs + 2 SDDs + 2 SSDs) ⇒ 7 pixel layers
- 3. Fast readout
- readout Pb-Pb interactions > 50 kHz and pp interactions > 200 kHz
- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown
- 5. High radiation tolerance
- TID: 2.7 Mrad, NIEL: 1.7×10^{13} 1 MeV n_{eq} cm⁻² (safety factor 10)

ALICE ITS Upgrade – The New ITS

ALICE ITS Upgrade – The New ITS Performance (MC)

Improved impact parameter resolution

High standalone tracking efficiency

~40 μ m at p_{T} = 0.5 GeV/c

ALICE ITS Upgrade – Physics Reach

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb^{-1}}$		
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	
	(GeV/c)	uncertainty	(GeV/c)	uncertainty	
Heavy Flavour					
D meson R_{AA}	1	10%	0	0.3%	
$D_s meson R_{AA}$	4	15%	< 2	3%	
D meson from B R_{AA}	3	30%	2	1%	
J/ψ from B R_{AA}	1.5	15% (p _T -int.)	1	5%	
B^+ yield	not accessible		2	10%	
$\Lambda_{ m c} R_{ m AA}$	not accessible		2	15%	
$\Lambda_{\rm c}/{ m D}^0$ ratio	not accessible		2	15%	
$\Lambda_{\rm b}$ yield	not a	not accessible		20%	
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%	
D_{s} meson v_{2} ($v_{2} = 0.2$)	not accessible		< 2	8%	
D from B v_2 ($v_2 = 0.05$)	not accessible		2	8%	
J/ψ from B $v_2 \ (v_2 = 0.05)$	not accessible		1	60%	
$\Lambda_{\rm c} v_2 \left(v_2=0.15\right)$	not a	accessible	3	20%	
Dielectrons					
Temperature (intermediate mass)	not accessible			10%	
Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%	
Low-mass spectral function [4]	not accessible		0.3	20%	
Hypernuclei					
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%	

* J. Phys. G(41) 087002

ALICE ITS Upgrade – ALPIDE (ALice Plxel Detector) Chip

- Pixel pitch: 29µm x 27µm
- Ultra-low power (entire chip): $< 40 \text{mW/cm}^2$
- Global shutter: triggered acquisition (200 kHz) or continuous (integration time <10µs)

Efforts on chip design from China (Since 2012):

(1) Matrix readout architecture (Dr. P. Yang): lower power, fast readout

(2) Pixel analog front-end (Dr. C.S. Gao): Charge mis-match reduction, lower noise

substrate

ALICE ITS Upgrade – ALPIDE (ALice Plxel Detector) Chip

Detection Efficiency Detection Efficiency 0.995 **Rate/Pixel** 10⁻⁵ 0.99 0.985 10-6 0.98 Fake-Hit 10⁻⁷ Efficiency Fake-Hit Rate 0.975 10⁻⁸ W7-R2. 1 Pixel Masked 0.97 W7-R8. 9 Pixels Masked 10⁻⁹ 0.965 10⁻¹⁰ 0.96 10⁻¹¹ 0.955 0.95 50 100 150 200 250 Threshold (e)

- Spatial resolution: ~ 5 μm (3-D)
- Fake-hit rate: ~10⁻¹⁰ pixel/event

Efforts on chip testing from China (Since 2014):

- (1) pALPIDE-3 and pALPIDE chip testing at CERN (2 CCNU phD students)
 (2) pALPIDE-3 chip testing in Ching by
- (2) pALPIDE-3 chip testing in China by CCNU-USTC group, and involving in new readout development for ALPIDE

ALICE ITS Upgrade – Detector Barrel Staves

ALICE ITS Upgrade – Barrel Layout

HIC (Hybrid Integrated Circuit) module: FPC + 2X7 pixel chips (Outer) or FPC + 1X9 pixel chips (Inner)

ALICE ITS Upgrade – HIC Assembly

Automated Module Assembly (custom-made machine)

Electrical Interconnection (Wire Bonding)

Efforts on HIC module assembly from China (Since 2014, 2 phD students at CERN):

(1) HIC module testing
 (2) HIC module assembly training (MAM machine operation, gluing, other procedures)

ALICE ITS Upgrade – HIC Assembly

Chip-FPC interconnection R&D at Wuhan (cooperated with a Shenzhen company)

Technical:

- Non-contact heating method (kind of thermal radiation);
- Heating temperature ~300 °C, heating time <1 second;
- solder material is Sn.

The FPCs were produced in Wuhan using CERN Gerber files

ALICE ITS Upgrade -- OB HIC/Stave Production

Layer	Stave	Half-stave	ніс	Chip
L3	24	48	192	2688
L4	30	60	240	3360
L5	42	84	588	8232
L6	48	96	672	9408
Spares (20%)	11 18	22 36	88 252	1232 3528
Total	65 108	130 216	2032	28448

Stave PRR	Mar '17
HIC production	Apr '17 ÷ Jun '18
Stave production	Jun '17 ÷ Sep '18

ALICE ITS Upgrade – HIC and Stave Construction Flow

ALICE ITS Upgrade – Preparation at Wuhan for HIC production

- Clean room was tested and accepted at the beginning of November, 2016.
 - ✓ Temperature/humidity controllable
 - ✓ ISO6 area ~ 70 m² + ISO7 area ~ 20 m²
 - ✓ Grounding terminals
 - ✓ Gas supply system (4 channels)
- The clean room has been applied to the MAM site acceptance testing (Nov. 17 ~ 22).
- Technicians and students are trained for MAM operation, and full HIC assembly training will be started in next March.
- Wire-bonding machine procurement is underway.

ALICE ITS Upgrade – Preparation at Wuhan for HIC production

Summary and Outlook

- The upgrade of the ALICE ITS will provide excellent tracking capabilities, significantly improving the impact parameter resolution and reading out Pb-Pb events at 50 kHz interaction rate.
- The new ITS, based on the next generation of MAPS pixel chips, will help to extend the physics reach to new observables and to improve the accuracy of existing ones.
- Preparations in Wuhan are in good shape for the HIC module serious production, which will be started in April, 2017.
- Production schedule in Wuhan:
 - > 406 Outer Barrel modules will be produced in Wuhan
 - > ~ 2 HICs/day (1 HIC/day at the beginning of production phase)
 - > ~ 250 working days (2 shifts/per day, 5 days for a week)
 - Period since April, 2017 to June, 2018

Thanks for your attention!

Overall ITS Planning

8th ALICE ITS Upgrade, MFT and O2 Asian Workshop @ KMUTT, Yaping Wang

Introduction – the Current ALICE/ITS Detector

The Current ITS:

6 concentric barrels, 3 different technologies

- 2 layers of silicon pixel (SPD)
- 2 layers of silicon drift (SDD)
- 2 layers of silicon strips (SSD)

Introduction – Heavy Flavor Measurements at ALICE

- *R*_{AA}(D)≈*R*_{AA}(π): Δ*E*_c≈Δ*E*_g(?) or different parton *p*_T distributions and fragmentation functions
- Charm hadronization through recombination in medium (?) predicted in models

 hint of R_{AA}(D)<R_{AA}(D_s+) in data to be confirmed with higher precision
 measurements

Hard Probes 2016

ALICE Overview

X. Zhang

Introduction – Heavy Flavor Measurements at ALICE

- Production of D mesons at lower p_T is less suppressed than light-flavor particles in central Pb+Pb collisions.
- Non-zero v2 is observed for D mesons over a wide p_T range, which is compatible with charged particles.

> The current statistical and systematic uncertainties do not allow for firm conclusions for some measurements.

The read-out rate capabilities and space-point precision of the current ITS are not sufficient to perform similar measurements with beauty particles (B-mesons).

Introduction – Heavy Flavor Measurement at ALICE

Example: D⁰ meson

Open charm

Particle	Decay Channel	с τ (μm)
D ⁰	K ⁻ π ⁺ (3.8%)	123
D+	K⁻π⁺π⁺ (9.5%)	312
$\mathbf{D}_{\mathbf{s}}^{*}$	K⁺ K⁻ π⁺ (5.2%)	150
Λ_{c}^{*}	p K⁻π⁺ (5.0%)	60

Analysis based on decay topology and invariant mass technique

Heavy Flavor Physics Program – Physics Performance

D meson R_{AA} :

Heavy Flavor Physics Program – Physics Performance

Beauty R_{AA}:

Charm and Beauty v_2 :

Heavy flavor baryons:

First measurments of Λ_c in Pb-Pb collisions at LHC

Matrix readout architectures:

Explorer and design new matrix readout architectures other than rolling shutter scheme;

Goals: lower power, fast readout

Projection readout method

Four projection dimension can achieve 100% efficiency of data reconstruction for ITS outer layers of hit rate 0.3 hit/cm²

- Implements the first prototype of OrthoPix
- Pixel size 10 $\mu m^{*}10~\mu m,$ hit density of outer layers, 0.0000012 (cluster size 4).
- Chip is functional, testing ongoing
- AERD (Address Encoder Reset Decoder) data-driven readout
- Implements the AERD circuit in pALPIDE-1/2
- Zero-suppression: only read out hit pixels, speed 25ns/hit
- Power consumes 720 pJ/hit

[Costanza, Ping Yang, Cesar, Walter, Gianluca, etc.]

Efforts and Status – ALPIDE Chip Design

Pixel Analog Front End revision and optimization:

- Charge threshold mismatch reduction
 - Device sizing based on Monte Carlo simulation
 - 2nd stage cascode NMOS (M9)
 - Addition of protection diode on MOS gate (reliability issue, no simulation models)

Post-layout Cd = 2.5 fF	Front-end circuit	Charge threshold		Equivalent
		Mean [e]	rms [e]	Noise Charge
	sector4 (pALPIDE-3)	90	2.0	3.3
	sector2 (pALPIDE-2)	107	6.6	4.6

Improvements in pALPIDE-3

- Charge threshold -15%
- Mismatch 3.3 times lower
- ENC -30 %

Diode reset, 2 um spacing

[Walter, Thanu, Chaosong Gao, Daehyeok, Seongjoo, Andrei]

Chip/module testing:

- > pALPIDE-3b single chip assembly and carrier board tests
- PALPIDE-3 Multi Event Buffer Noise Occupancy tests
- > Measurements on pALPIDE-3b hybrids with power supply defects
- Participated in IB 9-Chip HIC tests
- Participated in the TID chips' behavior test, ran the standard scan and compared the results before/after the irradiation;
- pALPIDE-3b light/dark effect tests
- > ALPIDE carrier standard scan
- > ALPIDE defective chip check, locate short position and broken pixels;
- > Participate in ALPIDE Dynamic Profile test;

phD students: Mangmang An, Shuguang Zou

Module assembly training:

- ◆ Participated in the activities of pALPIDE-3 Single Chip Assembly
- Studied the procedure of single Chip-FPC sample cross slicing/section check;
- Participated in exploring the heat-soldering technology for Chip-FPC and assisted the CCNU group to establish the setup for the ALPIDE test.
- Participated in the Module Assembly Machine (MAM) training, operate the MAM to do the whole procedures of IB/OB module assembly.

phD student: Mangmang An, Shuguang Zou