

Open Heavy Flavor Production at RHIC with the STAR Experiment

Long Zhou (for the STAR Collaboration) University of Science and Technology of China

Second China LHC Physics Workshop (CLHCP 2016): 第2届中国 LHC物理工作会议

Outline

- Motivation
- STAR experiment
 - HFT sub-system design and performance
- Heavy Flavor Measurements
 - $D^0 R_{AA}$
 - $D^0 v_2$
 - $\boldsymbol{D}_{\boldsymbol{S}} \boldsymbol{R}_{\boldsymbol{A}\boldsymbol{A}}$
 - $D_s V_2$
- Outlook
- Summary

Motivation

Heavy quarks

- produced mostly from initial hard parton scatterings at RHIC energies; exposed to the whole evolution of the QGP
- total yield or mass not (significantly) altered within the QGP
- Physics Interest
 - High pT: test different energy loss mechanisms: radiative vs collisional
 - At low pT: extract medium properties from motion of heavy quarks in medium e.g. diffusion coefficient

2016/12/18

Open Charm production at RHIC

Heavy flavor quarks can serve as calibrated probes for the QGP at RHIC:

- production in p+p collisions are described by pQCD calculations
- produced mostly in the initial hard scatterings at RHIC energies
- has only a small contribution from gluon splitting

Outline

- Motivation
- STAR experiment
 - HFT sub-system design and performance
- Heavy Flavor Measurements
 - $D^0 R_{AA}$
 - $D^0 v_2$
 - $\boldsymbol{D}_{\boldsymbol{S}} \boldsymbol{R}_{\boldsymbol{A}\boldsymbol{A}}$
 - $D_s V_2$
- Outlook
- Summary

Experimental Setup

STAR Heavy Flavor Tracker

Pixel detector (PXL)

• two layers of thin Monolithic Active pixel Sensors with 356M $20.7 \times 20.7 \mu m$ pixels

- excellent DCA resolution for HF studies Intermediate Silicon Tracker (IST)
- one layer of fast readout single-sided double-metal silicon strip detector **Silicon Strip Detector (SSD)**

• existing one layer of double-sided silicon strip detector with electronic upgrade

						T ³⁰		σ = ~1 mm
Detector	Radius	Hit Resolution	Radiation	SSD	r = 22	+		\sim
Delector	(cm)	R/φ - Z (μm)	length			+ 20		σ = ~300 um
SSD	22	20 / 740	1% X ₀	IST	r = 14	+		
IST	14	170 / 1800	<1.5 %X ₀	PXL	r. = 8	⊥ 10		σ = ~250 μm
PXL	2.8/8	6 / 6	~0.4 %X ₀		2	1		~ 10
					r ₁ = 2.8	0	XLLA	σ=<30μm

HFT performance

<u>Au + Au @ 200 GeV</u>

- Kaon track pointing resolution exceeds the requirement <55 μm at 750 MeV/c
- Pointing resolution in the region with Al-cables ~45 μ m

2016/12/18

Long Zhou / USTC

Outline

- Motivation
- STAR experiment
 - HFT sub-system design and performance
- Heavy Flavor Measurements
 - $D^0 R_{AA}$
 - $D^0 v_2$
 - $D_{s} R_{AA}$
 - $-D_sV_2$
- Outlook
- Summary

Particle Identification

- Excellent long-lived hadron and electron identification
- Secondary vertex reconstruction with HFT \rightarrow Full kinematic reconstruction of charmed hadron
- A factor of ~4 improvement in D0 significance by the HFT. First results on D^{\pm} and Ds 2016/12/18 Long Zhou / USTC

New Results from HFT-D⁰ Spectrum

STAR: PRL 115 (2014) 142501

• Consistent with published result, with improved statistical precision

• Finalizing systematic uncertainties for pT< 2 GeV/c

New Results from HFT- $D^0 R_{AA}$

• *R_{AA}*(D)>1 for pT~1.5 GeV/c Charm coalescence with a radially flowing bulk medium

- High *p_T*: significant suppression in central Au+Au collisions.
 Strong charm-medium interaction
- Improved Au+Au precision at high p_T thanks to the HFT.
- R_{AA} at low p_T with Run14 Au+Au and Run15 p+p HFT data are underway.

STAR Do 2010/11: PRL 113 (2014) 142301

New Results from HFT- $D^0 R_{AA}$

- R_{AA} (D)>1 for pT~1.5 GeV/c Charm coalescence with a radially flowing bulk medium
- High p_T : significant suppression in central Au+Au collisions.
- Strong charm-medium interaction
- *R_{AA}*(D) ~ *R_{AA}*(π) at *p_T*>4 GeV/c
 Similar suppression for light partons and charm quarks at high pT

STAR D₀ 2010/11: PRL 113 (2014) 142301 STAR π 0-12%: PLB 655 (2007) 104 Long Zhou / USTC

New Results from HFT – D^0 V_2

- D0 azimuthal anisotropy significantly different from zero for $p_T > 2$ GeV/c
- B->D feed down is negligible at RHIC energies (<5% relative contribution)

2016/12/18

Long Zhou / USTC

New Results from HFT – $D^0 V_2$

Theory curves: latest calculations from private communications TAMU: PRC 86 (2012) 014903, PRL 110 (2013) 112301

New Results from HFT – $D^0 V_2$

• Finite D₀ v₂ for p_T>1 GeV/c

Favors charm quark diffusion

• Lower than light hadron v₂

Indicates that charm quarks are not fully thermalized with the medium

New Results from HFT – D meson V₂

Compare with Theory

Models with charm diffusion coefficient of 2~10 describe STAR D₀ RAA and v₂ results. Lattice calculations are consistent with values inferred from data.

New Results from HFT – D_s

- Strangeness enhancement in heavy-ion collisions is expected to affect the yield of D_{s} : relative increase of D_s yield than D^0 predicted.
- Elliptic flow of $D_s < D^0$ is expected due to earlier freeze out of D_s .

- Both D_s and $D^0 R_{AA}$ are consistent with model calculations within uncertainty.
- Hint of enhancement in D_s meson production.

New Results from HFT - *D_s*

- The ratio of D_s/D^0 yield measured in Au+Au collisions is found to be higher than that in p+p collisions from PYTHIA
- First measurement of $D_s v_2$ in heavy-ion experiment. More data are needed to draw conclusion.

Outline

- Motivation
- STAR experiment
 - HFT sub-system design and performance
- Heavy Flavor Measurements
 - $D^0 R_{AA}$
 - $D^0 v_2$
 - $\boldsymbol{D}_{\boldsymbol{S}} \boldsymbol{R}_{\boldsymbol{A}\boldsymbol{A}}$
 - $D_s V_2$
- Outlook
- Summary

STAR Heavy Flavor II

Transverse Momentum p₊ (GeV/c)

Projected $R_{AA}(0-10\%)$ stat. uncertainty for RHIC pp and AuAu running in 2021-22

use chips developed for ALICE ITS upgrade and existing HFT infrastructure - cost effective

hits and thus better tracking

efficiency

Summary

- The STAR HFT has been successfully installed and taking data in 2014-2016
- Presented first results of charmed meson R_{AA} and v_2 using the HFT
- $D^0 R_{AA}$ and v_2 in Au+Au collisions: favor model calculation with charm quark diffusion, diffusion coefficient inferred from data consistent with Lattice QCD
- Looking forward to improved baseline from 2015 and statistics in year 2016
- A faster HFT+ has been planned in order to measure the bottom quark hadrons at the top RHIC energy

Backup

Heavy Flavor Tracker

High precision R_{AA} , R_{pA} , v_2 , correlations results for D mesons and HF leptons; Unique at low p_T -> medium thermalization, total charm production

HFT sub-systems

PiXeL detector (PXL)

- Monolithic Active Pixel Sensor technology
- 20.7 µm pitch pixels
- Radius: 2.8 and 8 cm Length: ~20 cm

Silicon Strip Detector (SSD)

- Double sided silicon strip modules with 95 µm pitch
- Existing detector with new faster electronics
- Radius: 22 cm Length: ~106 cm

Intermediate Silicon Tracker (IST)

- Single sided double-metal silicon pad with 600 µm x 6 mm pitch
- Radius: 14 cm Length: ~50 cm

First MAPS-based vertex detector at a collider experiment

2016/12/18

Long Zhou / USTC

Charm production at RHIC

Charm production in jets at $p_T \sim 2-10$ GeV/c has a small contribution from gluon splitting and is dominated by jets initiated by charm quarks

 Direct topological reconstruction through hadronic channels, for instance:

 $D^0(\overline{D^0}) \to K^{\mp}\pi^{\pm}$

B.R. 3.9% $c\tau \sim 120 \ \mu m$

- Greatly reduced combinatorial background (4 orders of magnitude)
- Topological cuts optimized using TMVA (Toolkit for Multivariate Analysis)

