Higgs properties measurement through $H \rightarrow ZZ^* \rightarrow 4I$ with the ATLAS Detector

Haijun Yang (SJTU)

The 2nd China LHC Physics Workshop Peking University, December 17-19, 2016

Higgs Productions and Decays

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$ Analysis

- Extremely clean "Gold-plated" channel
 Fully reconstructed final states
 Good mass resolution (~ 1.6-2.4 GeV)
 High S/B ratio (~ 2.2-2.4)
 Low decay branching fraction (2.67%)
- Properties measurement
 o Higgs mass, width, spin, parity
 o Total and differential cross section
 o Couplings

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$ Selections

Trigger match with single and/or di-lepton trigger

Γ Four sub-channels: 4e, 2e2μ, 2μ2e, 4μ

Leptons and Jets requirements				
Electrons				
Loose Likelihood quality electrons with hit in innermost layer, $E_{\rm T} > 7 GeV$ and $ \eta < 2.47$				
Muons				
	Loose identification $ \eta < 2.7$			
	Calo-tagged muons with $p_{\rm T} > 15 \; GeV$ and $ \eta < 0.1$			
Combine	d, stand-alone (with ID hits if available) and segment tagged muons with $p_{\rm T} > 5 GeV$			
	$J \mathrm{ETS}$			
anti-	k_t jets with $p_T > 30 GeV$, $ \eta < 4.5$ and passing pile-up jet rejection requirements			
	Event Selection			
Quadruplet	Require at least one quadruplet of leptons consisting of two pairs of same flavour			
SELECTION	opposite-charge leptons fulfilling the following requirements:			
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet - 20, 15 and $10 GeV$			
	Maximum of one calo-tagged or standalone muon per quadruplet			
	Select best quadruplet to be the one with the (sub)leading dilepton mass			
	(second) closest the Z mass			
	Leading dilepton mass requirement: $50 \text{ GeV} < m_{12} < 106 \text{ GeV}$			
	Sub-leading dilepton mass requirement: $12 < m_{34} < 115 GeV$			
	Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell} < 5 GeV$			
	$\Delta R(\ell, \ell') > 0.10 \ (0.20)$ for all same(different)-flavour leptons in the quadruplet			
ISOLATION	Contribution from the other leptons of the quadruplet is subtracted			
	Muon track isolation ($\Delta R \leq 0.30$): $\Sigma p_{\rm T}/p_{\rm T} < 0.15$			
	Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_{\rm T}/p_{\rm T} < 0.30$			
	Electron track isolation ($\Delta R \leq 0.20$) : $\Sigma E_{\rm T}/E_{\rm T} < 0.15$			
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_{\rm T}/E_{\rm T} < 0.20$			
Impact	Apply impact parameter significance cut to all leptons of the quadruplet.			
Parameter	For electrons : $ d_0/\sigma_{d_0} < 5$			
SIGNIFICANCE	For muons : $ d_0/\sigma_{d_0} < 3$			
Vertex	Require a common vertex for the leptons			
SELECTION	$\chi^2/\text{ndof} < 6 \text{ for } 4\mu \text{ and } < 9 \text{ for others.}$			

H. Yang - Higgs->ZZ*->4l Properties Measurement

Estimated Backgrounds in Control Regions

Main background is ZZ: estimated from MC simulation, scaled to theoretical xsection
 Reducible backgrounds: Zbb, Z+light jets, ttbar, using data-driven method

→ Estimates agree with data in control regions where isolated & d0 requirements are removed for subleading pairs. Estimated background using data-driven methods by extrapolating to signal region using extrapolation factors.

Background	Fit yield in CR	Extrapolation factor [%]	Yield in SR
Z+heavy-flavour jets	348 ± 29	(0.60 ± 0.04)	$2.10 \pm 0.17 \pm 0.13$
tī	351 ± 14	(0.21 ± 0.03)	$0.74 \pm 0.03 \pm 0.00$
Z+light-flavour jets	10 ± 15	(2.3 ± 0.3)	$0.24 \pm 0.35 \pm 0.03$
WZ	(MC-b	ased estimation)	0.63 ± 0.31

H. Yang - Higgs->ZZ*->4l Properties Measurement

Analysis Strategy

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$ BDT Outputs

H. Yang - Higgs->ZZ*->4l Properties Measurement

Higgs→ZZ*→4ℓ Cross Section

Total and fiducial cross	Lepton definition				
	Muons: $p_{\rm T} > 6 \text{ GeV}, \eta < 2.7$		Electrons: $p_{\rm T} > 7$ GeV, $ \eta < 2.47$		
section measurement	Pairing				
section measurement.	Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
N	Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
$\sigma^{\text{tot}} = \frac{1}{1}$	Event selection				
$= \mathcal{A} \cdot C \cdot \mathcal{B} \cdot f_{\text{int}}$	Lepton kinematics:	Leading lep	pton $p_{\rm T} > 20, 15, 10 {\rm ~GeV}$		
	Mass requirements:	$50 < m_{12} <$	$< 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$		
N	Lepton separation:	$\Delta R(\ell_i, \ell_j) >$	> 0.1(0.2) for same (opposite) flavour leptons		
fid _ Ivs	J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs			
$O_{4\ell} = \overline{C_{\ell} C_{\ell}}$	Mass window:	$118 < m_{4\ell}$	< 129 GeV		
C · Lint					

Final state	measured $\sigma_{\rm fid}$ [fb]	$\sigma_{\rm fid,SM}$ [fb]	
4μ	$1.28 \substack{+0.48 \\ -0.40}$	$0.93 \substack{+0.06 \\ -0.08}$	4l 4.0+1.01 ct
4e	$0.81 \substack{+0.51 \\ -0.38}$	$0.73 \substack{+0.05 \\ -0.06}$	$\sigma_{\rm fid,sum}^{\rm re} = 4.48^{+1.01}_{-0.89}$ fb
$2\mu 2e$	$1.29 \substack{+0.58 \\ -0.46}$	$0.67 \ ^{+0.04}_{-0.04}$	$\sigma_{\rm fidcomb}^{4\ell} = 4.54^{+1.02}_{-0.00} \rm{fb}$
$2e2\mu$	$1.10 \substack{+0.49 \\ -0.40}$	$0.76 \substack{+0.05 \\ -0.06}$	-0.90

Higgs Fiducial and Total Cross Section

□ Total and fiducial cross section measurement at 13 TeV.

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$ Couplings

- The universal coupling strength scale factors
 - K_F for all fermions
 - K_V for all vector bosons.
- □ The H→ZZ*→4l channel is not sensitive to the K_F and relative sign of the two couplings, only a quadrant is shown in K_V-K_F plane.
- □ Assume SM Higgs with mass of 125GeV, the fitted coupling scale factors are compatible with the SM predictions.

Higgs $\rightarrow ZZ^* \rightarrow 4\ell$ Production Modes

Higgs Production Cross Sections

SM prediction (pb)

 44.5 ± 2.3

 3.52 ± 0.07

 1.36 ± 0.03

 0.64 ± 0.02

 0.60 ± 0.06

 Combining γγ and ZZ final states
 The compatibility between measurement and SM prediction corresponds to a p-value of 21%.

Best fit value (pb)

 $47.8^{+9.8}_{-9.4}$

 $7.9^{+2.8}_{-2.4}$

 $-2.5^{+2.9}_{-2.6}$

 $0.32^{+1.07}_{-0.79}$

 $-0.11^{+0.67}_{-0.54}$

ATLAS-CONF-2016-081

ATLAS Preliminary m_H=125.09 GeV \sqrt{s} =13 TeV, 13.3 fb⁻¹($\gamma\gamma$), 14.8 fb⁻¹(ZZ) --- Observed 68% CL SM Prediction σ_{ggF} σ_{VBF} σ_{VHhad} σ_{VHlep} $\sigma_{
m top}$ -5 -4 -3 -2 -1 0 2 3 1 4 - 5

Parameter value norm. to SM value

 σ_{aaF}

 $\sigma_{\rm VBF}$

 $\sigma_{\rm VHhad}$

 $\sigma_{\rm VHlep}$

 σ_{top}

Higgs Cross Sections x Br

➔ The compatibility between the measurement and SM prediction corresponds to a p-value of 11%.

ATLAS Preliminary m_H=125.09 GeV √s=13 TeV, 13.3 fb⁻¹ (γγ), 14.8 fb⁻¹ (ZZ) → Observed 68% CL SM Prediction

Higgs Production Cross Sections

→ The compatibility between measurement and SM prediction corresponds to a p-value of 43%. $\mu = \frac{\sigma \times B}{(\sigma \times B)^8}$ → The global signal strength is measured to be: $\mu = 1.13 + 0 + 0 + 0 + 0$ → The local significance of Higgs boson is 10 or (exp: 8.6 or)

H. Yang - Higgs->ZZ*->4l Properties Measurement

Search for BSM Higgs

- Limits on the BSM parameters K_{HVV}, K_{AVV} sinα are derived with a fit of yields in different categories.
- □ K_{SM} which scales SM interactions is fixed to unity. ggF production is fixed to SM value, but Br(H→ZZ*) and BSM couplings are free parameters.

Analysis	Signal				Background		Total	Observed
category	$ggF + b\bar{b}H + t\bar{t}H$	VBF	WH	ZH	ZZ^*	$Z + jets, t\bar{t}$	expected	
0-jet	11.2 ± 1.4	0.120 ± 0.019	0.047 ± 0.007	0.060 ± 0.006	6.2 ± 0.6	0.84 ± 0.12	18.4 ± 1.6	21
1-jet	5.7 ± 2.4	0.59 ± 0.05	0.137 ± 0.012	0.091 ± 0.008	1.62 ± 0.21	0.44 ± 0.07	8.5 ± 2.4	12
2-jet VBF enriched	1.9 ± 0.9	0.92 ± 0.07	0.074 ± 0.007	0.052 ± 0.005	0.22 ± 0.05	0.24 ± 0.11	3.4 ± 0.9	9
2-jet VH enriched	1.1 ± 0.5	0.084 ± 0.009	0.143 ± 0.012	0.101 ± 0.009	0.166 ± 0.035	0.088 ± 0.011	1.6 ± 0.5	2
VH-leptonic	0.055 ± 0.004	< 0.01	0.067 ± 0.004	0.011 ± 0.001	0.016 ± 0.002	0.012 ± 0.010	0.16 ± 0.01	0
Total	20 ± 4	1.71 ± 0.14	0.47 ± 0.04	0.315 ± 0.027	8.2 ± 0.9	1.62 ± 0.07	32 ± 4	44

Search for Heavy Higgs

Final state	ZZ*	$Z + jets, t\bar{t}, WZ$	$t\bar{t}V,VVV$	Expected	Observed
4μ ggF-enriched	125 ± 10	0.95 ± 0.14	1.57 ± 0.09	127 ± 10	128
$2e2\mu$ ggF-enriched	205 ± 17	2.5 ± 0.4	2.75 ± 0.17	211 ± 17	199
4e ggF-enriched	83 ± 7	1.47 ± 0.22	1.28 ± 0.08	86 ± 7	111
VBF-enriched	4.6 ± 2.8	0.18 ± 0.05	0.268 ± 0.016	5.1 ± 2.8	10
Total	418 ± 35	5.1 ± 0.7	5.87 ± 0.35	429 ± 35	448

H. Yang - Higgs->ZZ*->4l Properties Measurement

Search for Heavy Higgs

→BSM: two Higgs doublet model (2HDM); Electroweak singlet model (EWS)

4I) [fb] → The maximum deviation from SM bkgd is found at → ZZ × BR(Sa mass ~705 GeV with NWA 35% CL limits on $\sigma_{gg^{
m F}}$ the global p-value is $\sim 1.9\sigma$. → No significant excess has been observed.

Dec.17, 2016

→ 4I) [fb]

10

LWA 1%

500

95% CL limits on $\sigma_{ggF} \times BR(S {\rightarrow} ZZ$

10

400

H. Yang - Higgs->ZZ*->4l Properties Measurement

Analysis using full datasets is still ongoing, please stay tuned !

Thank you !

Combined Higgs Mass

ATLAS + CMS: PRL114 (2015) 191803

Higgs Properties Measurement

rement

Higgs Strength μ = 1.09 ± 0.14 ATLAS 10³ Spin/Parity: 0⁺ • Data 10² 0⁺ SM $2^+ (\kappa_0 = \kappa_0)$ **Couplings: agree with SM predictions** 10 Results are consistent with the SM ! 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) 10 -σ(stat.) ATLAS Preliminary Total uncertainty (sys inc. m, = 125 GeV CMS m_H = 125.36 GeV Combined 🚺 ± 1σ on μ 10⁻² $\mu = 1.00 \pm 0.14$ р_{зм} = 0.96 $H \rightarrow \gamma \gamma$ $\mu = 1.17^{\circ}$ 10^{-3} $H \rightarrow \gamma \gamma$ tagged $H \rightarrow ZZ^*$ $\mu = 1.12 \pm 0.24$ $\mu = 1.46^{+0.40}$ 10^{-4} $H \rightarrow WW^*$ $H \rightarrow ZZ$ tagged $\mu = 1.18^{+0.24}$ $\mu = 1.00 \pm 0.29$ 10⁻⁵ $H \rightarrow b\overline{b}$ -20 $\mu = 0.63^{+0}$ -30 $H \rightarrow WW$ tagged $\textbf{H} \rightarrow \tau \tau$ $\mu = 0.83 \pm 0.21$ $\mu = 1.44^{+0.42}$ $H \rightarrow \mu\mu$ $k_F \frac{m_F}{V}$ or $\sqrt{k_V \frac{m_V}{V}}$ $H \rightarrow \tau \tau$ tagged $\mu = -0.7^{+3}$ $\mu = 0.91 \pm 0.28$ $H \rightarrow Z\gamma$ LHC Run 1 $\mu = 2.7^{+4.6}$ $H \rightarrow bb tagged$ Combined $\mu = 0.84 \pm 0.44$ $\mu = 1.18^{+0.15}$ ^{1.5} 2 Best fit σ/σ_{SM} 0 0.5 1 2 0 2 -1 1 vs = 7 TeV, 4.5-4.7 fb Signal strength (µ) vs = 8 TeV, 20.3 fb √s = 7 TeV, L = 5.1 fb⁻¹ √s = 8 TeV, L = 19.7 fb -2 In(L_J, /L₀*) - CMS data Median expected **1**0⁻² $0^+ \pm 1\sigma$ $J^{P} \pm 1\sigma$ 60 $0^+ \pm 2\sigma$ $J^{P} + 2\sigma$ $0^+ \pm 3\sigma$ $J^{P} \pm 3\sigma$ 40 20 **1**0⁻³ -20 10-4 -40 10⁻¹ Z*->4l Prope 1 1 1 1* 2⁺_m 2⁺_m 2⁺_m $2_{\rm b}^+$ Dec.17, 2016 0⁺_h 1 2⁺

 $q\bar{q} \rightarrow X$ any $q\bar{q} \rightarrow X$ any $gg \rightarrow X$ $q\bar{q} \rightarrow X$ any $gg \rightarrow X$ $gg \rightarrow X$ $gg \rightarrow X$

any

Higgs Properties Measurement

<u>۲</u>

Coupling scale factors

2-parameter benchmark model:

 $\kappa_V = \kappa_W = \kappa_Z$

 $\kappa_{\mathsf{F}} = \kappa_{\mathsf{t}} = \kappa_{\mathsf{b}} = \kappa_{\mathsf{c}} = \kappa_{\mathsf{t}} = \kappa_{\mathsf{g}}$

(Gluon coupling are related to top, b, and their interference in tree level loop diagrams)

Assume no BSM contributions to loops: $gg \rightarrow H$ and no BSM decays (no invisible decays)

$$\kappa_V = 1.09^{+0.07}_{-0.07}$$

 $\kappa_F = 1.11^{+0.17}_{-0.15}$

 $\Rightarrow \kappa_F = 0$ is excluded (>5 σ)

$$\frac{\sigma \cdot B (gg \to H \to \gamma\gamma)}{\sigma_{SM}(gg \to H) \cdot B_{SM}(H \to \gamma\gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

1

1.2

1.4

1.6

04

0.6

0.8

1.8

 κ_V

Fermionic & Bosonic production

Can also fit μ_V^f vs μ_F^f per decay: ATLAS and CMS u^{f}_{VBF} $- \mu_V^f = \mu_{VBF+VH}^f$ LHC Run 1 3 Preliminary $- \mu_{F}^{f} = \mu_{ggF+ttH}^{f}$ 2 $\mu_{V/}\mu_{f}$ can be measured in the different decay channels and combined: $\mu_{V/}\mu_{f} = 1.06^{+0.35}_{-0.27}$ $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$ H → WW * SM -68% CL $H \rightarrow \tau \tau$ in agree with SM + Best fit $H \rightarrow bb$ 2 1.5 2.5 0.5 0.53 3.5 $\mu^{\mathsf{f}}_{\mathsf{qgF+ttH}}$

Analysis of Single Resonance $Z \rightarrow 4\ell$

The Z →4l production was first observed at the LHC by ATLAS and CMS. It serves as a standard candle for 4l decay channel along the Higgs discovery.
 Cross section and BR measurement of the Z → 4l production provides

 A SM test for a rare decay process, measurements of σ(4l) and BR(Z→4l)
 A complementary test of the detector response for H → 4l detection

$Z/ZZ \rightarrow 4I$ Productions

- arXiv: 1509.07844
- Very rich physics: resonant $Z \rightarrow 41$, $H \rightarrow ZZ^* \rightarrow 41$, SM $ZZ \rightarrow 41$
- Differential cross section measurements in m_{41} and P_T for inclusive 41 (80< m_{41} <1000 GeV)
- First try to constraint $gg \rightarrow 41$ contribution from data
- Theoretical predictions available at different level of corrections

Theoretical Predictions: $qq \rightarrow ZZ$: Powheg (NLO) on-shell H: Powheg (NLO) $gg \rightarrow ZZ$: MCFM (LO) $H \rightarrow 4I$ & on-shell $qq \rightarrow ZZ$: NNLO QCD + NLO EWK

