

ΙΗΕΡ

Higgs boson production in the four-lepton final state with CMS

Second China LHC Physics Workshop 16-19 December 2016, Peeking University, Beijing

<u>Muhammad Ahmad</u> Institute of High Energy Physics, Chinese Academy of sciences On behalf of the CMS Collaboration

Higgs boson production and decay

Ref. : CMS-PAS-HIG-16-033

Decay channel	Branching ratio [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
H ightarrow gg	8.56 ± 0.86
$H\to\tau\tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H \to \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H ightarrow \mu \mu$	0.022 ± 0.001

The $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell=e,\mu$) channel at the LHC:

→ Large S/B ratio, excellent resolution, complete reconstruction of the final state.

 \rightarrow 'Golden channel' for discovery and property measurements This talk will focus new CMS RUN II results with 12.9 fb⁻¹ collected in 2016

 \rightarrow Similar sensitivity to H(125) as RUN I results New w.r.t Moriond'16 results:

- \rightarrow New 6 categories sensitive to all 5 production modes
- \rightarrow Fid. cross section and mass measurement with 2016 data
- → Width (onshell/onshell+offshell production)

Events categories

Matrix-element (MELA) based discriminants are defined based on angular information of the event using JHUGen and MCFM

 \rightarrow discriminants are sensitive to gg/qqbar \rightarrow H production modes

$$\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}} = \left[1 + rac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q}\overline{\mathrm{q}}}(\vec{\Omega}^{\mathrm{H} \to 4\ell} | m_{4\ell})}{\mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}}(\vec{\Omega}^{\mathrm{H} \to 4\ell} | m_{4\ell})}
ight]^{-1}$$

→ Other new discriminants for production modes are

 $\rm D_{\rm 1jet}$, $\rm D_{\rm 2jet}$ (for VBF), $\rm D_{\rm WH}$, $\rm D_{\rm ZH}$ We look for H(125) GeV in 6 event categories, based on number of jets , b-tagged jets, additional leptons and cuts on discriminating variables More details in backup

Expectation in [118, 130 GeV]

Systematic uncertainties

Summary of relative systematic uncertainties			
Common experimental uncertainties	,		
Luminosity	6.2 %		
Lepton identification/reconstruction efficiencies	6 – 11 %		
Background related uncertainties			
QCD scale ($q\bar{q} \rightarrow ZZ$, $gg \rightarrow ZZ$)	3 – 10 %		
PDF set ($q\bar{q} \rightarrow ZZ$, $gg \rightarrow ZZ$)	3-5%		
Electroweak corrections ($q\bar{q} \rightarrow ZZ$)	1 – 15 %		
$gg \rightarrow ZZ K$ factor	10 %		
Reducible background (Z+X)	40 – 55 %		
Event categorization (experimental)	2 – 18 %		
Event categorization (theoretical)	3 – 20 %		
Signal related uncertainties			
QCD scale $(q\bar{q} \rightarrow VBF/VH, gg \rightarrow H/t\bar{t}H)$	3 – 10 %		
PDF set $(q\bar{q} \rightarrow VBF/VH, gg \rightarrow H/t\bar{t}H)$	3-4%		
$BR(H \rightarrow ZZ \rightarrow 4\ell)$	2 %		
Lepton energy scale	0.04 – 0.3 %		
Lepton energy resolution	20 %		
Event categorization (experimental)	2 – 15 %		
Event categorization (theoretical)	8-20 %		

VBF-2jet-tagged event

VBF-2jet-tagged H \rightarrow ZZ* \rightarrow 2e2 μ candidate $m_{_{4\ell}}$ = 124.93 GeV, $D_{_{bkg}}^{\quad kin}$ = 0.694

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-08 23:47:39.259242 GMT Run / Event / LS: 276525 / 2665335317 / 1561

Events selection

Observed events in [118, 130 GeV]

Category	Untagged	VBF-1j	VBF-2j	VH-lept.	VH-hadr.	tītH	Total
$q\bar{q} \rightarrow ZZ$	7.27	0.82	0.06	0.10	0.11	0.01	8.36
$gg \rightarrow ZZ$	0.62	0.11	0.01	0.01	0.01	0.00	0.77
Z + X	3.83	0.32	0.24	0.05	0.08	0.10	4.64
Sum of backgrounds	11.73	1.25	0.32	0.16	0.20	0.11	13.77
Signal ($m_{\rm H} = 125 {\rm GeV}$)	15.51	3.62	1.45	0.14	0.70	0.19	21.61
Total expected	27.24	4.87	1.77	0.30	0.90	0.30	35.38
Observed	29	1	2	0	1	0	33

Significance results

Signal strength and p-values has been extracted in all 3 final states and 6 event categories by simultaneous fitting of 2D likelihood

$$\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4\ell})$$

Minimum p-value found at $m_{H} = 124.3 \text{ GeV}$ $\rightarrow 6.4\sigma \text{ obs.}$ (6.3 $\sigma \text{ exp.}$) significance At $m_{H} = 125.09 \text{ GeV}$ which is Run I CMS and ATLAS combination result $\rightarrow 6.2\sigma \text{ obs.}$ (6.5 $\sigma \text{ exp.}$) significance

Mass measurement

Mass measurement is extracted using per event mass uncertainties which bring 8% improvement in mass resolution

→ Propagate per lepton momentum uncertainties to four lepton candidate corrected in data/MC using Z events

Signal strength results

CMS/

Muhammad Ahmad (IHEP)

Width-mass measurement

Muhammad Ahmad (IHEP)

Width-mass measurement(cont.)

Fiducial cross section

The fiducial volume definition is chosen to closely match the reconstruction level selection, defined using leptons at the hard scattering level

Requirements for the $H \rightarrow 4\ell$ fiducial phase space				
Lepton kinematics and isolation				
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$			
Sub-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$			
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7 (5) {\rm GeV}$			
Pseudorapidity of electrons (muons)	$ \eta < 2.5 \ (2.4)$			
Sum of scalar p_T of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 p_{\mathrm{T}}$			
Event topology				
Existence of at least two SFOS lepton pairs, where leptons satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 < m(Z_1) < 120 \text{GeV}$			
Inv. mass of the Z ₂ candidate	$12 < m(Z_2) < 120 \text{GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$			
Inv. mass of any opposite-sign lepton pair	$m(\ell_i^+\ell_j^-) > 4 \text{GeV}$			
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$			

- > For jets, p^T >30 GeV and $|\eta|$ <4.7
- A crucial point is the inclusion of isolation in the fiducial selection
 - \rightarrow Does not include neutrinos or FSR photons
 - → Without isolation, the difference in efficiency between production modes can be more than 50%

Fiducial cross section

- Model dependence of the measurement procedure is estimated by repeating the measurement using the efficiencies and non-fiducial ratios from a range of different models of production
- We quote the full model dependence without any experimental constraints as a separate systematic effect

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	fnonfid	$(1+f_{\text{nonfid}})\epsilon$
Individual Higgs boson production modes				
gg→H	0.371	0.608 ± 0.001	0.121 ± 0.001	0.682 ± 0.002
VBF	0.422	0.614 ± 0.002	0.089 ± 0.001	0.669 ± 0.002
WH	0.283	0.587 ± 0.002	0.241 ± 0.003	0.729 ± 0.003
ZH	0.307	0.611 ± 0.003	0.207 ± 0.004	0.738 ± 0.005
ttH	0.238	0.573 ± 0.004	0.593 ± 0.011	0.914 ± 0.009

Inclusive cross section results

Muhammad Ahmad (IHEP)

Differential cross section results

Differential variables $P_{\tau}(H)$ and N(jets)

Sensitive to PDFs of colliding proton and relative contribution of different Higgs boson production mechanisms

Summary

Measured complete set of Higgs boson properties using $H \rightarrow ZZ^* \rightarrow 4\ell$ at $\sqrt{s} = 13$ TeV using 12.9 fb⁻¹

- → Rediscovered Higgs boson, significance observed 6.2 σ (expected 6.9 σ) at m_H = 125.09 GeV
- → Mass of Higgs boson measured to be $124.50^{+0.47}_{-0.45}$ (stat.) $^{+0.13}_{-0.11}$ (sys.)
- $_{
 m a}$ combined signal strength $\mu = \sigma/\sigma_{SM} = 0.99^{+0.33}_{-0.26}$
- \rightarrow Measured signal strength in all production modes μ_{ggH} , μ_{VBF} , μ_{VH} , and μ_{ttH}
- → Measured Fid. Cross section $\sigma_{\text{fid.}} = 2.29^{+0.74}_{-0.64} (\text{stat.})^{+0.30}_{-0.23} (\text{sys.})^{+0.01}_{-0.05} (\text{model dep.}) \text{ fb}$
 - → Differential measurements as function $p^{T}(H)$, N(Jets)

CMS has recorded data corresponds to ~40 fb⁻¹ integrated luminosity in 2016 (X3 times by the results presented). New results would be published soon (Moriond'17)

Backup

Control region for Z+X

Z1 and Z2 inv. mass

Muhammad Ahmad (IHEP)

Discriminants

Event Categories

6 mutually exclusive categories, defined applying following criteria in this exact order: 1. exactly 4 leptons + $\{2-3 \text{ jets with } \leq 1 \text{ b-tag or } \geq 4 \text{ jets with } 0 \text{ b-tag} \}$ + high D 2jet value \rightarrow VBF-2jet tagged category 2. exactly \geq 4 leptons + {2-3 jets with \leq 1 b-tag or 4 jets with 0 b-tag} + high D WH or D ZH value; or 2-3 jets + 2 b-tags \rightarrow VH-hadronic tagged category 3. \leq 3 jets + 0 b-tag + {exactly 5 leptons or ≥ 1 pair of additional opposite-sign leptons}; or 0 jet + \geq 5 leptons CMS Preliminary 12.9 fb⁻¹ (13 TeV) \rightarrow VH-leptonic tagged category 21.28 exp. events all 4. \geq 4 jets + \geq 1 b-tag; 15.27 exp. events Untagged or \geq 5 leptons \rightarrow ttH tagged category VBF-1j tagged 3.56 exp. events 5. exactly 4 leptons + exactly 1 jet + high D 1jet value VBF-2j tagged 1.44 exp. events → VBF-1jet tagged category VH-leptonic 0.14 exp. events tagged 6. other events \rightarrow untagged category VH-hadronic 0.69 exp. events tagged

ggH

VBF