Search for SUSY with same-sign or three leptons and jets at $\sqrt{S} = 13$ TeV

Huajie Cheng, Shan Jin, Yang Liu, Feng Lyu,

Huan Ren, Da Xu, Peng Zhang, Xuai Zhuang

IHEP(China) 2016.Dec.18th

Analysis motivation

Search gluino and squark initiated decay chains with multi-leptons in the final state

- Natural SUSY signature:
 - gluino, stop and sbottom masses expected to be at TeV scale.
- Gluinos are majorana particles:
 - -allow for same-sign lepton pair production
- Rare processes in Standard Model:
 - very low background expectation.

Signal Region definition

Signal scenario:

- Same-sign (SS) lepton pairs or three leptons (3L)
 + jets (pT > 25, 40, 50 GeV) and/or b-jets (pT > 20 GeV)
- large E_T^{miss} , $M_{eff} = \sum p_T^{lep} + \sum p_T^{jet} + E_T^{miss}$ (high kinematic regions)

RPC Signal regions

6 RPC signal regions defined as a function of b-jet & lepton multiplicity:

SR	N_ℓ	$N_{b ext{-jets}}^{20}$	$N_{\rm jets}$	$p_{ m T}^{ m jets}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	m _{eff} [GeV]
SR3L1	≥3	=0	≥4	40	>150	-
SR3L2	≥3	=0	≥4	40	>200	1500
SR0b1	≥2	=0	≥6	25	>150	>500
SR0b2	≥2	=0	≥6	40	>150	>900
SR1b	≥2	≥1	≥6	25	>200	>650
SR3b	≥2	≥3	≥6	25	>150	>600

RPV signal regions

3 RPV signal regions also defined, as a function of b-jets and jet multiplicity

SR	N_{ℓ}	$N_{b\text{-jets}}^{20}$	$N_{\rm jets}$	$p_{\mathrm{T}}^{\mathrm{jets}}$	$E_{\rm T}^{\rm miss}$ [GeV]	m _{eff} [GeV]	Other
SR1b-DD	≥2	≥1	≥4	50	-	>1200	≥ 2 negatively-charged leptons
SR3b-DD	≥2	≥3	≥4	50	-	>1000	≥ 2 negatively-charged leptons
SR1b-GG	≥2	≥1	≥6	50	-	>1800	-

RPV SUSY processes featuring gluino (a,b) or down squark (c,d) pair production and decays via baryon number-violating couplings λ'' considered in this analysis.

Background estimation

background events with prompt SS/3I:

- $\checkmark t\bar{t}W, t\bar{t}Z$
- ✓ Diboson (dominant in 0b SRs)
- Other rare process

Estimated by Monte-Carlo simulation

- Dedicated VR for most of the backgrounds
- ttH, tttt, ttt, tZ, ttWW, tWZ, Wh, Zh, tri-boson

Data-driven estimation for electron charge-midID background

- Events with OS lepton pair are assigned with weight: $w_{\text{flip}} = \xi_1(1 - \xi_2) + (1 - \xi_1)\xi_2$ where for muons: $\xi_{(i)} = 0$
- Charge-flip rate are measured using Z->ee events using likelihood method

Fake leptons(Dominant source in most of the SRs)

Mainly from B hadrons decay (semi-leptonic ttbar process)

Estimated using pure data-driven - Matrix Method

- real efficiency
- Z->ll tag-and-probe

- fake rate

data in CR enriched in ttbar.

$$\binom{n_{\text{pass}}}{n_{\text{fail}}} = \begin{pmatrix} 1 & 1\\ \frac{1-\varepsilon}{\varepsilon} & \frac{1-\zeta}{\zeta} \end{pmatrix} \binom{n_{\text{real}}}{n_{\text{fake}}}$$

Validation plots for SM background estimation

Uncertainties include statistical sources, as well as systematic uncertainties for the data-driven backgrounds; for illustration, statistical uncertainties alone are shown in the light-coloured error bands in the ratio plots.

Results in Signal Regions

Yields in signal regions.

No excess observed

	SR3L1	SR3L2	SR0b1	SR0b2	SR1b	SR3b	SR1b-GG	SR1b-DD	SR3b-DD
Observed	6	2	5	0	12	2	2	12	4
Total SM	6.05 ± 2.15	1.18 ± 0.49	8.81 ± 2.87	1.57 ± 0.77	11.40 ± 2.76	1.60 ± 0.61	1.69 ± 0.57	12.03 ± 2.68	1.86 ± 0.75
ttZ ttW Diboson Rare Fakes	0.69 ± 0.25 0.09 ± 0.04 4.18 ± 1.96 0.80 ± 0.44 0.29 ± 0.29	0.10 ± 0.04 0.02 ± 0.01 0.70 ± 0.43 0.21 ± 0.13 0.15 ± 0.15	0.45 ± 0.18 0.45 ± 0.17 3.72 ± 1.86 0.76 ± 0.44 2.92 ± 1.97	0.10 ± 0.04 0.13 ± 0.06 0.71 ± 0.52 0.18 ± 0.12 0.37 ± 0.53	1.97 ± 0.68 0.47 ± 0.41 2.69 ± 0.90		0.26 ± 0.08 0.33 ± 0.11 $0.08^{+0.19}_{-0.09}$ 0.64 ± 0.34 $0.21^{+0.33}_{-0.32}$	2.81 ± 0.89 1.81 ± 0.58 0.61 ± 0.42 2.57 ± 1.32 2.48 ± 1.66	0.30 ± 0.10 0.18 ± 0.07 0.00 ± 0.00 0.76 ± 0.40 0.48 ± 0.59
MisCharge	0.00 ± 0.00	0.00 ± 0.00	0.50 ± 0.09	0.08 ± 0.03	1.43 ± 0.19	0.14 ± 0.03	0.18 ± 0.07	1.74 ± 0.22	0.14 ± 0.03

MET distributions for PRV SRs without the Meff cut – RPC SRs

Meff distributions for PRV SRs without the Meff cut – RPV SRs

Interpretation

Gtt and direct sbottom

Interpretation

2step via W/Z/sleptons

Interpretation – RPV SRs

conclusion

• We presented a search for the production of gluinos and squarks in $\sqrt{S} = 13 TeV$ pp collisions, in final states with jets and same-sign leptons.

- Data to SM expectations in 9 SRs shows no significant excess.
- We set exclusion limits on the masses of gluinos, bottom squarks and neutralinos in various benchmark scenarios, extending significantly the limits set previously.
- ◆ One paper EPJC(2016)76(5), 1-26 published based on 2015 data
- CONF number of ICHEP: ATLAS-CONF-2016-037

backup

Data/ & MC samples

- Data(5.80fb-1)
 - **2015** data(3.19fb-1): reconstruction 20.7.3.8 (tag r7562), derivation 20.7.6.4 (tag r2667)
 - 2016 data(2.61fb-1): derivation 20.7.6.4 (tag r2667)
 - Period A: reconstruction 20.7.5.8 20.7.6.4 (tags f694-f706)
 - Period B: reconstruction 20.7.6.4 (tags f705-f708)

Monte Carlo

- ◆ All generated with **25-ns** bunch spacing configuration, derivation 20.7
- $t\bar{t}W$ with 0-2 extra partons $t\bar{t}Z/\gamma^*$ with 0-1 extra partons
- WZ ZZ $W^{\pm}W^{\pm}$ tree-induced qq->VV, loop induced gg->VV, EWK production VBS
- Rare process: $t\bar{t}H$, $t\bar{t}t\bar{t}$, $t\bar{t}t$, tZ, $t\bar{t}WW$, tWZ, Wh, Zh

Analysis framework

 Based on the SUSYAnalysisExample EventLoop package and various tags of SUSYTools up to 00-07-69 and analysis release up to

Object definition & event selections

Object selections

	Pre-selected Electron	Pre-selected Muon
Acceptance	$p_{\rm T} > 10 {\rm GeV}, \eta^{\rm clust} < 2.47$	$p_{\rm T} > 10 {\rm GeV}, \eta < 2.5$
	except $1.37 < \eta^{\text{clust}} < 1.52$	
Quality	LooseAndBLayerLLH	xAOD::Muon::Medium
ℓ-jet Isolation	see sect	ion 4.4
Impact parameter	$ d_0/\sigma(d_0) < 5.0$	
	Signal Electron	Signal Muon
Quality	MediumLLH	-
	$ \eta < 2.0$	-
Isolation	"FixedCutTight"	"FixedCutTightTrackOnly"
Impact parameter	$ z_0 \cdot \sin(\theta) < 0.5 \mathrm{mm}$	$ z_0 \cdot \sin(\theta) < 0.5 \mathrm{mm}$
		$ d_0/\sigma(d_0) < 3.0$

Pre-selected jet			
Collection	AntiKt4EMTopo		
Acceptance	$p_{\rm T} > 20 {\rm GeV}, \eta < 2.8$		
Overlap	see section 4.4		
Jet vertex tagger	reject jets with $p_T < 60$ GeV, $ \eta < 2.4$		
	and JVT<0.59 after overlap removal		
b-jets			
Acceptance	$p_{\rm T} > 20$ GeV,		
	$ \eta < 2.5$		
b-tagging	MV2c10 algorithm 70% OP		
	MV2c10 algorithm 85% OP for overlap removal		

Event slections:

- Cleaning requirements

 Bad jet, bad muons and cosmic muons
- At least 2 leptons

At least 2 signal leptons 2 leading leptons have pT>20GeV

- Then sorted into 3I events or SS2I events:
 - Event containing a 3rd signal-lepton with pT>10GeV is regarded as 3l event
 - Otherwise, if the 2 leading leptons have identical charge, the event is regarded as SS2l events

triggers

Trigger strategy - data

- 2015 data with $E_T^{miss} < 250 \, GeV$:

logical **OR** of **dilepton** triggers

HLT_2e12_lhloose_L12EM10VH

HLT_e17_lhloose_mu14

HLT_mu18_mu8noL1

- 2015 data with $E_T^{miss} > 250 \, GeV$:

logical OR of the dilepton triggers and HLT_xe70

- 2016 data with $E_T^{miss} < 250 GeV$

logical **OR** of **dilepton** triggers

HLT_2e17_lhvloose

HLT_e17_lhloose_nod0_mu14

HLT_mu20_mu8noL1

- 2016 data with $E_T^{miss} > 250 \, GeV$:

logical OR of the dilepton triggers and

HLT xe80 tc lcw L1XE50

*will be switched to HLT xe100 mht

Trigger strategy – MC

chosen randomly between the two options(data2015 or data 2016) according to the relative luminosities and μ profiles of the 2015 and 2016 datasets

Trigger match

Considered only for signal leptons with $p_T > 20 GeV$

Also for muons with pT>10 GeV in the case of the dimuon trigger

Trigger scale factor

Will be consider for MC events not passing the E_T^{miss} triggers

Background estimation

background events with prompt SS/3l in the final state:

- $\sqrt{t\bar{t}W_{\star}t\bar{t}Z}$
- ✓ Diboson (dominant in 0b SRs)
- ✓ Other rare process

ttH, tttt, ttt, tZ, ttWW, tWZ, Wh, Zh, tri-boson

Estimated by Monte-Carlo simulation

- Dedicated VR for most of the backgrounds

All systematic sources for RPC SRs

Uncertainty of channel	SR3L1
Total background expectation	2.95
Total statistical $(\sqrt{N_{exp}})$	±1.72
Total background systematic	±0.85 [28.72%]

alpha_theoryUncertWZ_SR3L1	±0.62
gamma_stat_SR3L1_cuts_bin_0	±0.49
alpha_JET_reso	±0.29
alpha_JET_scale_NP1	±0.28
alpha_JET_scale_NP3	±0.15
alpha_FT_JVT	± 0.14
Lumi	±0.14
alpha_theoryUncertRare	±0.11
alpha_theoryUncertTTbarV_SR3L1	±0.11
alpha_pileupBKG	±0.09
alpha_FT_B	±0.07
alpha_elID	± 0.04
alpha_FT_Extra1	±0.03
alpha_muSys	±0.03
alpha_FT_Light	±0.03
alpha_elIso	±0.02
alpha_elReco	±0.02
alpha_FT_C	±0.01
alpha_muIsoSys	± 0.01
alpha_JET_scale_NP2	±0.01
alpha_Mu_MS	±0.01
alpha_MET_Soft_reso_Para	±0.01
alpha_Mu_Scale	±0.01
alpha_muStat	±0.01
alpha_EG_Resolution	± 0.01
alpha_EG_Scale	±0.01
alpha_muIsoStat	±0.00
alpha_theoryUncertOtherMB	± 0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_MET_Soft_Scale	±0.00
alpha_Mu_ID	±0.00
alpha_FT_Extra2	±0.00
alpha_muStat_lowpt	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_muSys_lowpt	±0.00

Uncertainty of channel	SR3L2
Total background expectation	0.86
Total statistical $(\sqrt{N_{\rm exp}})$ Total background systematic	±0.93 ±0.42 [48.46%]

gamma_stat_SR3L2_cuts_bin_0	±0.36
alpha_theoryUncertWZ_SR3L2	±0.17
alpha_pileupBKG	±0.13
alpha_JET_scale_NP1	±0.06
alpha_JET_reso	±0.06
alpha_JET_scale_NP3	±0.05
Lumi	± 0.04
alpha_theory UncertRare	±0.03
alpha_FT_JVT	±0.03
alpha_FT_Extra1	±0.02
alpha_JET_scale_NP2	± 0.02
alpha_FT_B	±0.02
alpha_theoryUncertTTbarV_SR3L2	±0.02
alpha_muSys	±0.01
alpha_Mu_ID	±0.01
alpha_FT_Light	±0.01
alpha_elIso	±0.01
alpha_elID	±0.01
alpha_FT_C	±0.00
alpha_muIsoSys	±0.00
alpha_EG_Scale	±0.00
alpha_elReco	±0.00
alpha_muStat	±0.00
alpha_MET_Soft_reso_Para	±0.00
alpha_EG_Resolution	±0.00
alpha_Mu_MS	±0.00
alpha_muIsoStat	±0.00
alpha_FT_Extra2	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_muStat_lowpt	±0.00
alpha_muSys_lowpt	±0.00
alpha_Mu_Scale	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_MET_Soft_Scale	±0.00

Uncertainty of channel	SR0b1
Total background expectation	5.10
Total statistical $(\sqrt{N_{\text{exp}}})$ Total background systematic	±2.26 ±1.55 [30.48%]

Total background systematic	11.55 [50.46
alpha_syst_fake_SR0b1	±1.40
gamma_stat_SR0b1_cuts_bin_0	±1.08
alpha_JET_reso	±0.47
alpha_theoryUncertWZ_SR0b1	±0.44
alpha_JET_scale_NP1	±0.36
alpha_Mu_MS	±0.16
alpha_Mu_Scale	±0.16
alpha_FT_JVT	±0.15
alpha_pileupBKG	±0.15
alpha_Mu_ID	±0.15
alpha_JET_scale_NP2	±0.13
alpha_theory UncertRare	±0.13
alpha_theoryUncertTTbarV_SR0b1	±0.13
Lumi	±0.12
alpha_JET_scale_NP3	±0.11
alpha_FT_B	±0.09
alpha_theoryUncertWWjj_SR0b1	±0.06
alpha_FT_Extra1	±0.04
alpha_elID	±0.03
alpha_FT_Light	±0.02
alpha_muSys	±0.02
alpha_FT_C	±0.02
alpha_elIso	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_elReco	±0.01
alpha_syst_misch_SR0b1	±0.01
alpha_muIsoSys	±0.01
alpha_JET_EtaIntercalibration	±0.01
alpha_muStat	±0.01
alpha_EG_Resolution	±0.01
alpha_MET_Soft_reso_Para	±0.00
alpha_muIsoStat	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_EG_Scale	±0.00
alpha_FT_Extra2	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_muStat_lowpt	±0.00
alpha_muSys_lowpt	±0.00

All systematic sources for RPC SRs

Uncertainty of channel	SR0b2
Total background expectation	0.68
Total statistical $(\sqrt{N_{\rm exp}})$ Total background systematic	±0.82 ±0.25 [37.18%]
gamma_stat_SR0b2_cuts_bin_0	±0.20
alpha pileupBKG	±0.10
alpha_JET_scale_NP1	±0.07
alpha_theoryUncertWZ_SR0b2	±0.07
alpha_JET_scale_NP3	±0.04
alpha_theoryUncertTTbarV_SR0b2	±0.03
alpha_FT_JVT	±0.03
alpha_theoryUncertWWjj_SR0b2	±0.03
alpha_theoryUncertRare	±0.03
Lumi	±0.02
alpha_FT_B	±0.02
alpha_JET_scale_NP2	±0.02
alpha_FT_Extra1	±0.02
alpha_EG_Scale	±0.01
alpha_JET_reso	±0.01
alpha_MET_Soft_reso_Para	±0.01
alpha_FT_C	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_EG_Resolution	±0.01
alpha_FT_Light	±0.01
alpha_elID	±0.01
alpha_muSys	±0.00
alpha_MET_Soft_reso_Perp	±0.00
alpha_elIso	±0.00
alpha_muIsoSys	±0.00
alpha_elReco	±0.00
alpha_Mu_ID	±0.00
alpha_Mu_MS	±0.00
alpha_muStat	±0.00
alpha_JET_EtaIntercalibration	±0.00
alpha_muIsoStat	±0.00
alpha_FT_Extra2	±0.00
alpha_theoryUncertOtherMB	±0.00
alpha_muStat_lowpt	±0.00
alpha_muSys_lowpt	±0.00
alpha_Mu_Scale	±0.00

Uncertainty of channel	SR1b
Total background expectation	6.37
Total statistical $(\sqrt{N_{\text{exp}}})$	±2.52
Total background systematic	±1.61 [25.26%
alpha_syst_fake_SR1b	±1.35
gamma_stat_SR1b_cuts_bin_0	±1.05
alpha_theoryUncertRare	±0.59
alpha_theoryUncertTTbarV_SR1b	±0.46
alpha_JET_scale_NP1	±0.46
alpha_JET_reso	±0.22
alpha_FT_JVT	±0.22
Lumi	±0.16
alpha_JET_scale_NP2	±0.11
alpha_theoryUncertWZ_SR1b	±0.10
alpha_JET_scale_NP3	±0.09
alpha_FT_B	±0.07
alpha_etID	±0.04
alpha_syst_misch_SR1b	±0.04
alpha_EG_Scale	±0.03
alpha_elIso	±0.03
alpha_muSys	±0.02
alpha_MET_Soft_reso_Perp	±0.02
alpha_FT_Extra1	±0.02
alpha_pileupBKG	±0.02
alpha_elReco	±0.02
alpha_FT_C	±0.01
alpha_MET_Soft_Scale	±0.01
alpha_muIsoSys	±0.01
alpha_Mu_ID	±0.01
alpha_muStat	±0.01
alpha_theoryUncertOtherMB	±0.01
alpha_EG_Resolution	±0.01
alpha_JET_EtaIntercalibration	±0.00
alpha_Mu_MS	±0.00
alpha_muIsoStat	±0.00
alpha_FT_Light	±0.00
alpha_Mu_Scale	±0.00
alpha_FT_Extra2	±0.00
alpha_MET_Soft_reso_Para	±0.00
alpha_muSys_lowpt	±0.00
alpha_muStat_lowpt	±0.00

Uncertainty of channel	SR3b	
Total background expectation	0.91	
Total statistical $(\sqrt{N_{\rm exp}})$ Total background systematic	±0.96 ±0.55 [59.70%]	

gamma_stat_SR3b_cuts_bin_0	±0.50	
alpha_syst_fake_SR3b	± 0.30	
alpha_theory.UncertRare	+0.19	
alpha_FT_B	±0.05	
alpha_theoryUncertTTbarV_SR3b	± 0.04	
alpha_FT_JVT	± 0.04	
alpha_JET_scale_NP1	± 0.03	
Lumi	± 0.03	
alpha_FT_C	± 0.02	
alpha_FT_Extra1	± 0.02	
alpha_FT_Light	± 0.02	
alpha_JET_reso	± 0.01	
alpha_pileupBKG	± 0.01	
alpha_JET_scale_NP3	± 0.01	
alpha_syst_misch_SR3b	± 0.01	
alpha_JET_scale_NP2	± 0.01	
alpha_elID	± 0.01	
alpha_muSys	± 0.00	
alpha_elIso	± 0.00	
alpha_EG_Scale	± 0.00	
alpha_elReco	± 0.00	
alpha_MET_Soft_reso_Perp	± 0.00	
alpha_muIsoSys	± 0.00	
alpha_muStat	± 0.00	
alpha_Mu_ID	± 0.00	
alpha_FT_Extra2	± 0.00	
alpha_MET_Soft_reso_Para	± 0.00	
alpha_JET_EtaIntercalibration	± 0.00	
alpha_MET_Soft_Scale	± 0.00	
alpha_muIsoStat	± 0.00	
alpha_Mu_Scale	± 0.00	
alpha_EG_Resolution	± 0.00	
alpha_Mu_MS	± 0.00	
alpha_muSys_lowpt	± 0.00	
alpha_muStat_lowpt	±0.00	2

All systematic sources for RPV SRs

All Systematic soc	11 662 101	IVL A DIVO			
•				Total background expectation	9.93
Uncertainty of channel	SR RPV1bGG	Uncertainty of channel	SR_RPV3bDD	Total statistical $(\sqrt{N_{exp}})$	±3.15
		•		Total background systematic	±2.18 [21.93%]
Total background expectation	1.43	Total background expectation	1.30		2.62
Total statistical $(\sqrt{N_{exp}})$	±1.19	Total statistical $(\sqrt{N_{exp}})$	±1.14	alpha_syst_fake_SR_RPV1bDD	±2.03
Total background systematic	±0.37 [25.71%]	Total background systematic	±0.37 [28.88%]	gamma_stat_SR_RPV1bDD_cuts_bin_0	±1.11
	-0.04		0.20	alpha_theoryUncertTTbarV_SR_RPV1bDD alpha_theoryUncertRare	±1.07 ±0.97
alpha_theoryUncertRare	±0.24	alpha_theoryUncertRare	±0.28	alpha JET scale NP1	±0.56
gamma_stat_SR_RPV1bGG_cuts_bin_0	±0.22	gamma_stat_SR_RPV3bDD_cuts_bin_0	±0.20	alpha_JET_reso	±0.35
alpha theoryUncertTTbarV SR RPV1bGG	±0.14	alpha theoryUncertTTbarV SR RPV3bDD	±0.11	Lumi	±0.33
alpha_JET_scale_NP1	±0.09	alpha_FT_B	±0.08	alpha_FT_JVT	±0.30
alpha_FT_JVT	±0.06	alpha_FT_JVT	±0.06	alpha_syst_misch_SR_RPV1bDD	±0.20
Lumi	±0.05	alpha_JET_scale_NP1	±0.05	alpha_JET_scale_NP2	±0.20
alpha_JET_scale_NP2	±0.02	Lumi	±0.05	alpha_pileupBKG	±0.16
alpha_EG_Scale	±0.02	alpha_FT_Extra1	±0.04	alpha_JET_scale_NP3	±0.10
alpha_JET_scale_NP3	±0.02	alpha_FT_C	±0.04	alpha_FT_B	±0.12 ±0.12
alpha_FT_B	±0.02	alpha_FT_Light	±0.02	alpha_theoryUncertOtherMB	±0.12
alpha_FT_Extra1	±0.02	alpha_pileupBKG	±0.02	alpha_elID	±0.10
alpha_JET_reso	±0.01	alpha_JET_scale_NP2	±0.02	alpha_EG Scale	±0.09
alpha_elID	±0.01	alpha_EG_Scale	±0.01	alpha_elIso	±0.06
alpha_theoryUncertWZ_SR_RPV1bGG	±0.01	alpha_elID	±0.01	alpha_muSys	±0.06
alpha_elIso	±0.01	alpha_JET_scale_NP3	±0.01	alpha_FT_Extra1	±0.06
alpha_muSys	±0.01	alpha_muSys	±0.01	alpha_theoryUncertWZ_SR_RPV1bDD	±0.05
alpha_FT_Light	±0.01	alpha_elIso	±0.01	alpha_FT_Light	±0.05
alpha_FT_C	±0.01	alpha_FT_Extra2	±0.01	alpha_elReco	±0.03
alpha_elReco	±0.00	alpha_MET_Soft_reso_Para	±0.00	alpha_MET_Soft_reso_Para	±0.03
alpha_muIsoSys	±0.00	alpha_elReco	±0.00		±0.02
alpha_syst_misch_SR_RPV1bGG	±0.00	alpha_muIsoSys	±0.00	alpha_FT_C	±0.02
alpha_pileupBKG	±0.00	alpha_muStat	±0.00	alpha_muIsoSys alpha_muStat	±0.02 ±0.01
alpha_muStat	±0.00	alpha_JET_EtaIntercalibration	±0.00	• —	±0.01
alpha_MET_Soft_reso_Para	±0.00	alpha_EG_Resolution	±0.00	alpha_Mu_MS	±0.01
alpha_muIsoStat	±0.00	alpha_muIsoStat	±0.00	alpha_MET_Soft_reso_Perp	
alpha_Mu_ID	±0.00	alpha_JET_reso	±0.00	alpha_muIsoStat	±0.01
alpha_MET_Soft_reso_Perp	±0.00	alpha_Mu_MS	±0.00	alpha_FT_Extra2	±0.01
alpha_FT_Extra2	±0.00	alpha_MET_Soft_reso_Perp	±0.00	alpha_Mu_ID	±0.00
alpha_JET_EtaIntercalibration	±0.00	alpha_MET_Soft_Scale	±0.00	alpha_MET_Soft_Scale	±0.00
alpha_Mu_MS	±0.00	alpha_muSys_lowpt	±0.00	alpha_Mu_Scale	±0.00
alpha_EG_Resolution	±0.00	alpha_muStat_lowpt	±0.00	alpha_JET_EtaIntercalibration	±0.00
alpha_MET_Soft_Scale	±0.00	alpha_Mu_Scale	±0.00	alpha_EG_Resolution	±0.00
alpha_muSys_lowpt	±0.00	alpha_Mu_ID	±0.00	alpha_muSys_lowpt	±0.00
alpha_muStat_lowpt	±0.00			alpha_muStat_lowpt	$21^{\pm0.00}$
alpha_Mu_Scale	±0.00			alpha_theoryUncertWWjj_SR_RPV1bDD	±0.00

Uncertainty of channel

SR_RPV1bDD

Results in Signal Regions - RPV

Yields in RPV signal regions.

- No excess observed
- Observed data and background expectation for 5.8 fb-1
- And the background prediction normalized to 10 fb-1

	SR1b-GG	SR1b-DD	SR3b-DD
Observed	0	3	1
Total SM	0.83 ± 0.25	5.76 ± 1.56	0.75 ± 0.25
WWjj	0.00 ± 0.00	$0.00^{+0.00}_{-0.00}$	0.00 ± 0.00
WZ	0.02 ± 0.02	$0.10^{+0.23}_{-0.12}$	0.00 ± 0.00
ttZ	0.12 ± 0.04	1.29 ± 0.41	0.13 ± 0.04
ttW	0.16 ± 0.05	0.85 ± 0.28	0.08 ± 0.04
Rare	0.29 ± 0.16	1.16 ± 0.60	0.34 ± 0.18
OtherMultiBoson	0.00 ± 0.00	0.19 ± 0.08	0.00 ± 0.00
Fakes	0.15 ± 0.15	1.18 ± 1.17	0.15 ± 0.15
MisCharge	0.09 ± 0.05	0.98 ± 0.16	0.05 ± 0.02