On the PeV knee of cosmic-ray spectrum and TeV cutoff of electron spectrum

报告者: 靳超 合作者: 刘伟,胡红波,郭义庆

C. Jin, W. Liu, H. B. Hu, and Y. Q. Guo, On the PeV knee of cosmic rays spectrum and TeV cutoff of

electron spectrum, arXiv:1611.08384

2016年12月16日

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cosmic rays knee

cosmic rays knee $\sim 4 \ PeV$, assume the dominant component is He($\sim 4 \ GeV$) \longrightarrow $\gamma_A \sim 10^6$

(日) (四) (日) (日) (日)

Spectral cutoff of the electrons

Experiments measure a spectral cutoff of the electron at $\sim 1 \ TeV \rightarrow \gamma_e \sim 10^6$

D. Staszak, and for the VERITAS Collaboration,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

arXiv:1508.06597

- The 4 PeV knee of CRs and 1 TeV electron cutoff have a similar Lorentz factor $\gamma \sim 10^6$
- Assuming they have a common origin, we can associate them with a threshold interaction, like pair production by photons

CRs can interact with 1 eV photons at the SNR sources and lead to the spectral breaks

୍ଚର୍ତ

But the total number of photons in the Galaxy is insufficient

We need at least 10000 cm^{-3} photons to explain those spectral breaks, while only 1 cm^{-3} is obtained. Substituting the photon by a new particle X, the invisible property indicates a much less cross section σ_{CR} , thus $n_X \gg 10000 \ cm^{-3}$

• the X particles are abundant in the Galaxy CRs interact with Xs above their thresholds and produce X', $m_{X'} = 10^6 m_X$

$$CR + X \longrightarrow CR + X'$$

 X' is not necessary to be a particle, maybe a resonance or a collection of particles

Model Construction

Salvador Dali, Galatea of the Spheres, 1952

Spectra of the CR nuclei

(a)

Spectra of the CR nuclei

900

Spectrum of the electron varying with X's mass

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The electron calculations comparing with experiments

DQC

The electron calculations comparing with experiments

The calculations for the electron are compared with the HESS, VERITAS, MAGIC, and ATIC measurements

parameters	HESS	VERITAS	MAGIC	ATIC
m_x (eV)	1.6	0.7	1.4	0.4
η n_x \sigma_e ($ imes$ 10 $^{-23}~cm^{-1}$)	1.2	1.2	1.2	2.4
ξ	1.08	1.01	1.09	1

Given that the energy density of the dark matter is 0.4 $GeV\ cm^{-3},$ we can derive the cross section

parameters	HESS	VERITAS	MAGIC	ATIC
$n_{x} (\times 10^{8} \ cm^{-3})$	2.5	5.7	2.9	10
$\eta\sigma_e$ ($ imes$ 10 $^{-5}$ mb)	4.8	2.1	4.1	2.4

Assuming the dark matter is the X, the $\eta\sigma_e$ is still very large $\longrightarrow \eta \gg 1$

- Assuming the common origin for both the CR knee and the spectral cutoff of the electron, we introduce a new particle X abundant in the Galaxy
- The new particle and its interaction with CRs can explain those breaks at the same time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Results show the Z-type spectra
- The cross section of the nuclei is 2 ~ 3-order of magnitudes larger than the electron

 Many peaks for the nuclei results, and totaly cutoff above the Fe's threshold ~ 60*PeV* The over-simplified interaction model → around the threshold *E_{CR}* ↑, *σ_{CR}* ↑; at high energies, *E_{CR}* ↑, *σ_{CR}* ↓

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 \blacksquare Due to the experimental uncertainties, γ is not sure

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Discussion

DQC

- The precise measurements for the electron and the nuclei are necessary
- We look forward the precise measurement for the TeV electron by DAMPE
- We look forward the precise measurement for the composition of the PeV nuclei by LHAASO
- We wish the accelerator experiments can study this particle

Thanks

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで