

Phys.Rev.D90,032008(2014) CMS-PAS: SMP-15-008

CMS Triple Boson Production Results

Second China LHC Physics Workshop

The

Daneng Yang for the CMS Collaboration

December 15th, 2016 Peking University, Beijing

Motivations

Electroweak physics at the LHC

- Precise description of Standard Model background is crucial to new physics search in novel phase spaces
- Triple boson production is one of the rare ٠ processes that can be sensitive to new physics
- Deviations form the SM may live in high ٠ energy tails

 $WV\gamma$ Production

 $W\gamma\gamma$ and $Z\gamma\gamma$ productions

 $WV\gamma$ Production Phys. Rev. D 90, 032008 (2014)

 $W\gamma\gamma$ and $Z\gamma\gamma$ productions CMS-PAS: SMP-15-008

Many figures in the slides are taken from Josh Kunkle's talk

Anomalous Gauge Couplings

Probing gauge boson self interactions at the LHC

- Within the SM, the Gauge Lagrangian gives 6 vertices
- The LEP parameterization considers dimension 6 operators, which is not consistent with a symmetry breaking sector with a Higgs boson

$$\mathcal{L}_{6}^{0} = -\frac{e^{2}}{16\Lambda^{2}}a_{0}\mathbf{F}^{\mu\nu}\mathbf{F}_{\mu\nu}\ \vec{W}^{\alpha}\ .\ \vec{W}_{\alpha}\ ,$$

$$\mathcal{L}_{6}^{c} = -\frac{e^{2}}{16\Lambda^{2}}a_{c}\mathbf{F}^{\mu\alpha}\mathbf{F}_{\mu\beta}\ \vec{W}^{\beta}\ .\ \vec{W}_{\alpha}\ ,$$

$$\mathcal{L}_{6}^{n} = i\frac{e^{2}}{16\Lambda^{2}}a_{n}\epsilon_{ijk}W_{\mu\alpha}{}^{(i)}W_{\nu}{}^{(j)}W^{(k)\alpha}\mathbf{F}^{\mu\nu},$$

$$\vec{W}_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}}(W_{\mu}^{+} + W_{\mu}^{-}) \\ \frac{i}{\sqrt{2}}(W_{\mu}^{+} - W_{\mu}^{-}) \\ Z_{\mu}/\cos\theta_{W} \end{pmatrix},$$

Anomalous Gauge Couplings

Probing gauge boson self interactions at the LHC

QGCs from dimension 6 operators are in general manifested in a nonlinear

sigma model, without a Higgs boson (sigma field integrated out).

After the Higgs discovery, we consider the SM as an effective field theory. This

leads to many possible quartic interactions (Assuming no TGCs, Dimension 8).

$$\mathcal{L}^{NP} = \mathcal{L}^{SM(4)} + \frac{1}{\Lambda^{5}} + \frac{1}{\Lambda^{2}} \mathcal{L}^{6} + \frac{1}{\Lambda^{6}} \mathcal{L}^{7} + \frac{1}{\Lambda^{4}} \mathcal{L}^{8} + \cdots$$

$$\overset{\text{Ignore lepton/baryon number violating terms}}{\overset{\text{Ignore lepton/baryon number violating terms}}{\overset{\text{Ignore lepton/baryon number of a a construction of a a construction of the search for a a construction of a a construction of the search for a construction of the sea$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	X	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	X	Х	Х	Х	X	X	Х	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	X	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

Anomalous Gauge Couplings

Statistical Method

Likelihood based statistical study

- L: likelihood function
- f: aQGC parameter
- θ : nuisance parameters
- t: test statistics

$$\mathcal{L}(f,\theta) = norm(\theta) \quad Poisson(N|S+B) \prod_{n}^{N} P(p_{T,W}^{n}, f)$$
$$= norm(\theta) \cdot \frac{(B(\theta) + S(f,\theta))^{N}}{N!} e^{-(B(\theta) + S(f,\theta))} \prod_{n}^{N} \frac{S(f,\theta)f_{S}(p_{T,W}^{n}) + B(\theta)f_{B}(p_{T,W}^{n})}{S(f,\theta) + B(\theta)}$$

$$t_f = -2 \ln \frac{L(f,\hat{ heta})}{L(\hat{f},\hat{ heta})},$$

Results of Tri-Boson productions

Events / 5 GeV

CMS

Preliminarv

8

Events / 5 GeV jet→γ fakes 6 HHH Total uncertainty **Muon Channel** 5 $W\gamma\gamma$ observed Δ 3 with 2.4 σ 0 120 14 p^{γ γ} [GeV] 20 40 60 100 140 80 $\sigma_{W^{\pm}\gamma\gamma}^{\text{NLO}} \cdot \text{BR} (W \rightarrow \ell \nu) = 4.76 \pm 0.53 \,\text{fb} \text{ (Madgraph)}$ $\sigma_{W^{\pm}\gamma\gamma}^{\text{fid}} \cdot \text{BR} \left(W \to \ell \nu \right) = 6.0 \pm 1.8 \,(\text{stat}) \pm 2.3 \,(\text{syst}) \pm 0.2 \,(\text{lumi}) \,\text{fb}$ 19.4 fb⁻¹ (8 TeV) 19.4 fb⁻¹ (8 TeV) 16 CMS 18-CMS Events / 5 GeV Data Data Preliminary Preliminary Ζγγ Ζγγ 16 Other Multibosor Other Multibosor 12 iet→y fakes iet→v fakes W Total uncertainty WW Total uncertainty Electron Channel Muon Channel

 $\sigma^{
m fid}_{Z\gamma\gamma}\cdot{
m BR}\left(Z
ightarrow\ell\ell
ight)=12.7\pm1.4\,({
m stat})\pm1.8\,({
m syst})\pm0.3\,({
m lumi})\,{
m fb}$

Upper limit for WW γ and WZ γ cross section at 95% C.L. : 241 fb

- With photon $p_T > 10 \text{ GeV}$
- ~ 3.4 times the SM cross section: $WW\gamma + WZ\gamma = 70.3$ fb

 $Z\gamma\gamma$ observed with 5.9 σ

19.4 fb⁻¹ (8 TeV)

Other Multiboson

Wyy Signal

Data

Ζγγ

Results of aQGC limits

95% exclusion limits on the aQGCs $WV\gamma$ results

Observed limits	Expected limits
$-21 < a_0^W / \Lambda^2 < 20 { m TeV}^{-2}$	$-24 < a_0^W / \Lambda^2 < 23 {\rm TeV}^{-2}$
$-34 < a_{\rm C}^{\rm W} / \Lambda^2 < 32 {\rm TeV}^{-2}$	$-37 < a_{\rm C}^{\rm W} / \Lambda^2 < 34 {\rm TeV}^{-2}$
$-25 < f_{T,0} / \Lambda^4 < 24 \text{TeV}^{-4}$	$-27 < f_{T,0}/\Lambda^4 < 27 {\rm TeV}^{-4}$
$-12 < \kappa_0^W / \Lambda^2 < 10 {\rm TeV^{-2}}$	$-12 < \kappa_0^W / \Lambda^2 < 12 {\rm TeV}^{-2}$
$-18 < \kappa_C^{ m W}/\Lambda^2 < 17{ m TeV}^{-2}$	$-19 < \kappa_C^{W} / \Lambda^2 < 18 {\rm TeV}^{-2}$

$W\gamma\gamma$ results

Expected Limits (TeV^{-4})	Observed Limits (TeV^{-4})
$-30.5 < rac{f_{T0}}{\Lambda^4} < 31.1$	$-37.5 < rac{f_{T0}}{\Lambda^4} < 38.1$
$-36.9 < \frac{f_{T1}}{\Lambda^4} < 37.5$	$-46.1 < rac{f_{T1}}{\Lambda^4} < 46.9$
$-83.2 < rac{f_{T2}}{\Lambda^4} < 83.2$	$-103 < rac{f_{T2}}{\Lambda^4} < 103$
$-623 < \frac{\hat{f}_{M2}}{\Lambda^4} < 603$	$-751 < rac{\hat{f}_{M2}}{\Lambda^4} < 729$
$-1080 < \frac{\hat{f}_{M3}}{\Lambda^4} < 1110$	$-1290 < \frac{\hat{f}_{M3}}{\Lambda^4} < 1340$

Unitarity bounds (solid lines) still more stringent than experimental bounds (dashed lines). From $WV\gamma$ analysis.

No form factor is applied

Comparison of existing limits

Exclusive $\gamma\gamma \rightarrow WW$ CMS : arXiv:1305.5596 ($\Lambda_{ff} = 500$ GeV) OPAL: Phys.Rev. D70 (2004) 032005, arXiv:hep-ex/0402021 D0: arXiv:1305.1258 More stringent limits are now available from VBS experiments

Outlook

By LS2, we'll have about 150 fb^{-1} data. More tri-boson productions will become visible and shape measurements will be improved. More UV complete models will be matched to the effective field theory.