

Vector Boson Fusion Results from CMS Experiment

Jing Li Peking University, Beijing, China

On behalf of the CMS Collaboration

18th December 2016

Second China LHC Physics Workshop (CLHCP 2016) 16-19 December 2016 Peking University Bejing China

Overview CMS Preliminary

Introduction

Vector Boson Fusion (VBF) Standard Model (SM) processes

 Rare and novel processes: first measurement of VBF Z+2 jets and W+2 jets process

Clean environment with less QCD activity (jets property measurement)

Crucial tests of SM unitarity at high energy

Introduction

Higgs boson produced through VBF established at > 5 σ

- Important production process of Higgs boson
- Constraints on Higgs boson couplings

 VBF Z+2 jets and W+2 jets are important backgrounds of SM Higgs in VBF channel and in searching invisible Higgs

VBF characteristics

Two VBF tagged jets

- More quark-like
- High energy and large dijet invariant mass m_{ii}
- Separated by a large rapidity interval $|\Delta \eta_{ij}|$
- Lower central hadronic activities
 - Extra gluon emission is suppressed
 - Occupied by the boson, which is balanced with respect to the dijet system

$$y^* = y_Z - \frac{1}{2}(y_{j_1} + y_{j_2}).$$

$$Rp_{\rm T}^{\rm hard} = \frac{|\vec{p}_{\rm Tj_1} + \vec{p}_{\rm Tj_2} + \vec{p}_{\rm TZ}|}{|\vec{p}_{\rm Tj_1}| + |\vec{p}_{\rm Tj_2}| + |\vec{p}_{\rm TZ}|} = \frac{|\vec{p}_{\rm T}^{\rm hard}|}{|\vec{p}_{\rm Tj_1}| + |\vec{p}_{\rm Tj_2}| + |\vec{p}_{\rm TZ}|},$$

Theoretical inputs

- Diagrams other than VBF-like (EW Z+2 jets / EW W+2 jets)
 - Large negative interference between the pure VBF process and the other categories
 - Suppressed in VBF selection region

- NLO/LO k-factors
 - VBFNLO, usually flat and near unity in VBF region
- Interference
 - Between EW and QCD, modeled by MadGraph, included inside nominal result or for systematics

CMS-FSQ-12-035

8 TeV

Eur. Phys. J. C 75 (2015) 66

Signal sample:

Simulated by MadGraph at leading order (consistent with results with VBFNLO)
Use VBFNLO to derive NLO/LO k-factor
Interference effect included inside nominal result and for systematics

Main background:

 – QCD Z+jets production: simulated from MadGraph MLM matching, NLO/LO k-factor with MCFM, cross section normalized to NNLO prediction calculated with FEWZ, validated in control region

Event selection:

- Two same flavor opposite sign isolated leptons with p₁ > 20 GeV
- More than two jets with leading jet p_T > 50 GeV, second leading jet p_T > 30 GeV
- q-g discriminator
- m_{ii} > 200 GeV

$$|y_{z} - (y_{j1} + y_{j2})/2| < 1.2$$

- |m₇- m₁| < 15 GeV
- Signal region: R^{hard} < 0.14
- Control region: R_n^{hard} >= 0.14, with only one jet

Eur. Phys. J. C 75 (2015) 66

Signal extraction

Using MVA methods to enhance the separation

Signal extracted with CIs method, in both signal and control regions

$$\hat{N}^{\ell\ell jj}(\mu, v) = \mu N_{\rm EW \ Zjj} + \sqrt{\mu v} N_{\rm I} + v N_{\rm DY \ Zjj},$$

Dominant systematic

- QCD Z+2 jets prediction
- Interference effect
- Jet energy scale and resolution

Fiducial region:

• $M_u > 50 \text{ GeV}, m_j > 120 \text{ GeV}, p_{\tau_j} > 25 \text{ GeV}, |\eta_j| < 5$ $\sigma_{EW}(\ell\ell jj) = 174 \pm 15 \text{ (stat)} \pm 40 \text{ (syst) fb},$ Good agreement with theoretical LO prediction $\sigma_{LO}(EW \ell\ell jj) = 208^{+8}_{-9} \text{ (scale)} \pm 7 \text{ (PDF) fb},$

> 5 standard deviation

8

8 TeV CMS-FSQ-12-035

Eur. Phys. J. C 75 (2015) 66

EW Zjj Study of hadronic activities

9

CMS-SMP-13-012

8 TeV

JHEP 11 (2016) 147

Signal sample:

Simulated by MadGraph at leading order
 Use VBFNLO to derive NLO/LO k-factor:
 variation in signal strength < 1%
 Interference effect treated as systematic

Event selection:

- One isolated elecrtrom (muon) with p_T > 30 (25) GeV
- More than two jets with leading jet p₁ > 60
 GeV, second leading jet p₁ > 50 GeV
- Significant MET > 30 (25) GeV
- m_{ii} > 1000 GeV

•
$$|y_w - (y_{j1} + y_{j2})/2| < 1.2$$

• Second lepton veto

Main background:

 – QCD W+jets production: simulated from MadGraph MLM matching, cross section normalized to NNLO prediction calculated with FEWZ, data-driven normalization & shape correction 8 TeV CMS-SMP-13-012 JHEP 11 (2016) 147

EW Wjj

Data-driven QCD W+jets normalization:

 Using MVA methods to define a QCD control region

Trained to distinguish
 between EW W+2 jets
 and QCD W+jets events

Signal free region: BDT<0.1

Overestimation of the QCD W+jets event yield

 Normalization scale factors: 0.71 ± 0.02 (stat) ± 0.03 (syst) for electron channel, 0.70 ± 0.02 (stat) ± 0.05 (syst) for muon channel

JHEP 11 (2016) 147

Signal extraction – Unbinned maximum likelihood fit to m_{jj}

Floating QCD W+jets shape

$$\mathcal{F} = rac{1}{m_{
m jj}^{a_0 + a_1 \ln{(m_{
m jj}/8000)}}},$$

Dominant systematic

- QCD W+2 jets prediction
- Interference effect
- Jet energy scale and resolution

Fiducial region:

- $p_T^{j1} > 60 \text{ GeV}, |\eta^{j1}| < 4.7, p_T^{j2} > 50 \text{ GeV}, |\eta^{j2}| < 4.7, m_{jj} > 1000 \text{ GeV}$
- W decays to µv or ev

Channel	Measured cross section
Electron	0.41 ± 0.04 (stat) ± 0.09 (syst) ± 0.01 (lumi) pb
Muon	0.43 ± 0.04 (stat) ± 0.10 (syst) ± 0.01 (lumi) pb
Combined	$0.42\pm0.04~(\mathrm{stat})\pm0.09~(\mathrm{syst})\pm0.01~(\mathrm{lumi})~\mathrm{pb}$

Good agreement with theoretical LO prediction $0.50 \pm 0.02(scale) \pm 0.02(PDF) pb_{-12}$

First measurement

- Vector Boson Fusion (VBF) Higgs established at > 5 σ
- First measurement of VBF Z+2 jets and W+2 jets process
- With limited statistics, VBF topology has been studied
- With O(100 fb⁻¹) data of Run2, a lot more to do!

Babackup

7&8 TeV																
CMS-HIG-15-002						VRF Hinne										
J	HEP 08	<mark>3 (2016) 0</mark> 4	<mark>.5</mark>	All and a second							V	DI		95	13	
	<i>q</i>		S A ANALYSIC A SEL	<i>q</i>	_						A	TLAS and CMS HC Run 1	C T	Observed $\pm 1\sigma$ Th. uncert.	_	
				VBF	- Higgs p	rodu	ction	:	ggF	ZZ WW		-				
					Me	asured v	vith ⊢	$I \rightarrow Y$	Y, ZZ,	Ц	ττ γγ	-	_ •-		_	
WW					' ₩, ττ ^{¹/₂} ² / _{ww}											
		Signal sample: simulated with									ww		- -		-	
	g g POWHEG										ττ bb		_		_	
											WW ττ	-		•		
Production process Measured significance (σ) Expected significance (σ)												_				
VBF 5.4 4.6 $\frac{1}{2}$																
$-6 -4 -2 0 2 4 6 $ $\sigma \cdot B \text{ norm. to SM}$										6 8 SM prediction	10 on					
	Produ	uction							Decay	/ mode					-	
process $H \rightarrow \gamma$			γγ [fb]		$H \rightarrow ZZ$ [fb]			$H \to WW$ [pb]			$H \rightarrow \tau \tau$ [fb]			_		
			Best fit	Uncer	tainty	Best fit	Uncer	tainty	Best fit	Uncert	ainty	Best fit	Uncer	tainty	-	
			value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	_	
		CRUEZES	0.22	V.4 1	0.05	0.51	0.50	0.07	0.17	0.12	0.11	0.0	v. 1	U.T		
	VBF	Measured	$4.6^{+1.9}_{-1.8}$	$^{+1.8}_{-1.7}$	+0.6 -0.5	3^{+46}_{-26}	+46 -25	+7 -7	$0.39 {}^{+0.14}_{-0.13}$	$^{+0.13}_{-0.12}$	+0.07 -0.05	$125 {}^{+39}_{-37}$	+34 -32	+19 -18		
The state			$\binom{+1.8}{-1.6}$	$\binom{+1.7}{-1.6}$	$\left(\substack{+0.5\\-0.4}\right)$	$\binom{+60}{-39}$	$\binom{+60}{-39}$	$\binom{+8}{-5}$	$\binom{+0.15}{-0.13}$	$\begin{pmatrix} +0.13 \\ -0.12 \end{pmatrix}$	(+0.07) (-0.06)	$\binom{+39}{-37}$	$\binom{+34}{-32}$	$\begin{pmatrix} +19\\ -18 \end{pmatrix}$		
		Predicted	3.60 ± 0.20			42.2 ± 2.0			0.341 ± 0.017			100 ± 6			(
		Ratio	$1.3^{+0.5}_{-0.5}$	$^{+0.5}_{-0.5}$	$^{+0.2}_{-0.1}$	$0.1^{+1.1}_{-0.6}$	$^{+1.1}_{-0.6}$	$^{+0.2}_{-0.2}$	$1.2^{+0.4}_{-0.4}$	+0.4	+0.2	$1.3 \substack{+0.4 \\ -0.4}$	$^{+0.3}_{-0.3}$	+0.2	16	
の花					0.0	0.0			0.10	0.15	0.10	~ ~ ~				