NLO QCD + EW + decays prediction to ZZ + jet/γ productions at LHC

Wang Yong

Department of Modern Physics, USTC

17nd December 2016, PKU, Beijing

Based on recent work PRD. 94. 013011

Outline

Motivations

- Calculation details
- Numerical results
- Summary

四

Motivations Ι.

LHC: Precision measurements will be possible in Run2

ZZ+jet: A useful background process for Higgs-boson production.

ZZ+ γ : Help for the determination of quartic gauge boson coupling.

Standard Model Working Group Report							
VV'V''	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$					
		@ NLO QCD + NLO EW					
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$					
		@ NLO QCD + NLO EW					
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V decays)$					
		@ NLO QCD + NLO EW					
$\gamma\gamma$	$d\sigma @ NNLO QCD + NLO EW$	q_T resummation at NNLL matched to NNLO					

Les Houches 2013: Physics at TeV Colliders

Table 3: Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

12/18/2016

Motivations Ι.

Les Houches 2015: Physics at TeV Colliders **Standard Model Working Group Report**

High-precision NLO prediction needed !

$pp \rightarrow V + j$	$\mathrm{d}\sigma$	$N^2 LO_{QCD}$	$\mathrm{d}\sigma$	$N^2 LO_{QCD} + NLO_{EW} + decays$
$m \rightarrow V \pm 2i$	$\mathrm{d}\sigma$	NLO_{QCD} + decays	da	$N^2 I \Omega_{a c p} + N I \Omega_{p w} + docows$
$pp \rightarrow v + 2j$	$\mathrm{d}\sigma$	NLO_{EW} + decays	uo	N = DOQCD + NEOEW + decays
$pp \rightarrow VV' + 1, 2j$	$\mathrm{d}\sigma$	$NLO_{QCD} + decays$	dσ	$NLO_{COD} + NLO_{DW} + decays$
	$\mathrm{d}\sigma$	NLO_{EW}	uo	NLOQCD+ NLOEW+ decays
$m \rightarrow V V' V''$	$\mathrm{d}\sigma$	$\mathrm{NLO}_{\mathrm{QCD}}$	da	$NIO_{acp} + NIO_{put} + docaus$
	$\mathrm{d}\sigma$	$\rm NLO_{EW}$	uo	MLOQCD + MLOEW + decays
$pp ightarrow \gamma \gamma$	$\mathrm{d}\sigma$	$N^2 LO_{QCD}$	$\mathrm{d}\sigma$	$N^2 LO_{QCD} + NLO_{EW}$
$pp \rightarrow \gamma \gamma + j$	$\mathrm{d}\sigma$	NLO _{QCD}	$\mathrm{d}\sigma$	$N^2 LO_{QCD} + NLO_{EW}$
Table I.2: Precision	wish	list: vector boson final s	tates.	$V = W, Z ext{ and } V', V'' = W, Z, \gamma_{\text{So to PC set}}$

12/18/2016

ZZ + jet/ γ at NLO

II. Calculation details- LO contributions

3 partonic processes at $\mathcal{O}(\alpha_{ew}^2 \alpha_s)$ $q\bar{q} \rightarrow ZZ^+g; qg \rightarrow ZZ^+q; \bar{q}g \rightarrow ZZ^+\bar{q}$

Integrated cross section: $\sigma^{LO}(pp \rightarrow ZZ + jet/\gamma) = \sum_{a,b} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/p}(x_2) \hat{\sigma}^{LO}_{ab \rightarrow ZZ + jet/\gamma}$

$$\sigma^{NLO} = \sigma^{LO} + \sigma^{vir} + \sigma^{real}$$

12/18/2016

II. Calculation details- NLO QCD calculations

- > Corrections of NLO QCD could be large (typically at O(10%))!
- > Necessary to reduce the scale dependence !

State of the art (NLO QCD):

ZZ+jet: T. Binoth, T. Gleisberg, S. Karg, N. Kauer, and G. Sanguinetti, Phys. Lett. B683, 154 (2010).

ZZ+ γ: G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, Phys. Rev. D 81, 094030 (2010).

What next ...

 $\mathcal{O}(\alpha_s) \sim \mathcal{O}(\alpha_{ew}^2)$ The **NLO EW** correction becomes mandatory !

12/18/2016

II. Calculation details-EW Virtual corrections

 $pp \rightarrow ZZ + jet$

 $pp \rightarrow ZZ + \gamma$

Roughly **2K** loop diagrams for each !

12/18/2016

Loop amplitudes tensor reduction:

$$\mathbf{T}_{\mu_{1}...,\mu_{M}}^{N} = \frac{(2\pi\mu)^{4-D}}{i\pi^{2}} \int d^{D}q \frac{q_{\mu_{1}}...q_{\mu_{M}}}{D_{1}...D_{N-1}} \quad \text{with } D_{i} = \left[\left(q + p_{i} \right)^{2} - m_{i}^{2} \right]$$

N = 5: Reduced to 4-point integrals based on approach raised by Denner- Dittmaier.

Inhouse improved LoopTools package

 $N \leq 4$: Standered PV dimensional tensor reduction.

II. Calculation details-coupling scheme selection

EW input-parameter scheme

$$\alpha(0) \rightarrow \alpha_{G_{\mu}} = \frac{\sqrt{2}}{\pi} G_{\mu} M_{w}^{2} sin^{2} \theta_{w}, \quad \delta z_{e} \rightarrow \delta z_{e} - \frac{1}{2} \Delta r$$
for collinear photon emission
$$\alpha_{G_{\mu}} = \alpha_{0} (1 + \Delta r) + \Delta \alpha^{3}$$
absorb high order universal effects due to Δr

	LO	NLO QCD	NLO EW
pp→ZZ + jet	$\alpha_{G_{\mu}}^{2} \alpha_{s}$	$\alpha_{G_{\mu}}^2 \alpha_s^2$	$\alpha_{G_{\mu}}^{3}\alpha_{s}$
$pp \rightarrow ZZ + \gamma$	$\alpha_{G_{\mu}}^{2}\alpha_{0}$	$\alpha_s \alpha_{G_{\mu}}^2 \alpha_0$	$\alpha_{G_{\mu}}^{3}\alpha_{0}$

12/18/2016

II. Calculation details-real emission corrections

Problem: Identify the FS signal as ZZ+ jet or ZZ+ γ ?

Calculation details-IR-safe events identification Ш.

NOTE: Take photon emission for $pp \rightarrow ZZ + jet$ as example

W.r.t quark jet,

Recombination $q + \gamma \rightarrow \tilde{q} \gamma$ is necessary for Collinear singularities cancelation (KLN theorem) BUT, gluon jet should treated equivalence with quark jet Recombination $q + g \rightarrow \widetilde{g\gamma}$ is also needed \longrightarrow the $E_q \rightarrow 0$ leads to **Soft gluon poles !!!**

Solution 1:

Construct an adapted definition of the allowed hadronic energy fraction in a collinear jet-photon system.

Frixione isolation: S. Frixione, Phys. Lett. B 429 396 (1998)

$$p_{T,jet} > \chi(\delta), \qquad \chi(\delta) = E_{T,\gamma} \epsilon_{\gamma} (\frac{1 - \cos(\delta)}{1 - \cos(\delta_0)})^n$$

12/18/2016

QCD IR divergence of

II. Calculation details-IR-safe events identification

Solution 2:

✓ Take jet energy fraction $\frac{E_{jet}}{E_{jet}+E_{\gamma}}$ > 0.7 , extract ZZ + jet events from inclusive events.

 \checkmark The residual collinear singularities absorbed to renormalized photon fragmentation function .

----E.W.N. Glover and A.G. Morgan, Z. Phys. C 62. 311(1994)

$$\mathcal{D}_{q\to\gamma}(z_{\gamma}) = -\frac{Q_q^2 \alpha}{2\pi} \frac{1}{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu_r^2}{\delta_c \hat{s}}\right)^{\epsilon} [z_{\gamma}(1-z_{\gamma})]^{-\epsilon} [P_{\gamma q}(z_{\gamma}) - \epsilon z_{\gamma}] + D_{q\to\gamma}^{\text{bare}}(z_{\gamma}).$$

$$D_{q \to \gamma}^{\text{bare}}(z_{\gamma}) = \frac{Q_q^2 \alpha}{2\pi} \frac{1}{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{4\pi\mu_r^2}{\mu_f^2}\right)^{\epsilon} P_{\gamma q}(z_{\gamma}) + \underbrace{D_{q \to \gamma}(z_{\gamma}, \mu_f)}_{q \to \gamma}(z_{\gamma}, \mu_f)$$

 Non-perturbative fragmentation contributions has been determined by LEP experiment.

II. Calculation details-IR-safe events identification

Typical deviation like (NLO QCD corrections to $pp \rightarrow ZZ + \gamma$)

12/18/2016

II. Calculation details-General set up

QCD & EW corrections combined in approximate multiplying scheme:

RATHER:
$$\sigma^{\text{NLO}} = \sigma^{\text{LO}}[(1 + \delta_{\text{QCD}})(1 + \delta_{\text{EW}}) + \overline{\delta_{\gamma\text{-ind}}}]$$
 $= \sigma^{\text{LO}}(1 + \delta_{\text{NLO}}).$ Inclusion of photon density in
NNPDF ...**THAN:** $\sigma^{\text{NLO}} = \sigma^{\text{LO}} + \Delta \sigma^{\text{QCD}} + \Delta \sigma^{\text{EW}} + \Delta \sigma^{\gamma\text{-ind}}$ $\sigma_{\gamma\text{-ind}} = \sigma_{\gamma\text{-ind}}^{0} + \Delta \sigma_{\gamma\text{-ind}}^{N\text{LOQCD}},$
 (α_{ew}^{3})

Mixed $O(\alpha_s \alpha_{ew})$ contributions may important in describing the large logarithms and/or kinematical effects ! ! !

12/18/2016

III. Numerical results- $pp \rightarrow ZZ + jet$

 $\sigma^{\text{LO}} = 2.1348^{+9.8\%}_{-8.5\%} \text{ pb}, \quad \sigma^{\text{NLO}} = 3.087^{+5.5\%}_{-4.7\%} \text{ pb} \implies \text{Reduced scale dependence}$

\sqrt{S} [TeV]	$\sigma^{ m LO}$ [pb]	$\sigma^{ m NLO}$ [pb]	$\delta_{ m QCD}$ [%]	δ_{EW} [%]	$\delta_{\gamma ext{-ind}} \ [\%]$	$\delta_{ m NLO} \ [\%]$	
13 14 33 100	1.8709(1) 2.1348(3) 8.6670(8) 41.916(5)	2.708(4) 3.087(5) 12.63(2) 60.45(8)	52.6 52.6 54.4 53.5	-5.22 -5.32 -5.66 -6.10	0.13 0.13 0.10 0.07	44.76 44.61 45.76 44.21	Typically 1/10 δ_{QCD} suppression on integrated LO CS.
$p_{T,jet}^{cut}$ [GeV]	$\sigma^{ m LO}$ [pb]	σ ^{NLO} [pb]	$\delta_{ m QCD}$ [%]	$\delta_{ m EW}$ [%]	$\delta_{\gamma ext{-ind}} \ [\%]$	$\delta_{ m NLO}$ [%]	Phenomenological negligible due
20 50 100 200	5.2701(6) 2.1348(3) 0.76528(7) 0.16125(2)	7.146(9) 3.087(5) 1.176(2) 0.2759(4)	42.0 52.6 65.2 91.8	-4.59 -5.32 -7.04 -10.91	0.11 0.13 0.16 0.20	35.59 44.61 53.73 71.07	the small photon PDF.
	12/18/2016 ZZ + jet/γ at NLO					15	

III. Numerical results- $pp \rightarrow ZZ + jet$

A significant suppression due to EW Sudakov logarithms can be observed !

12/18/2016

III. Z-boson decays $pp \rightarrow \cdots \rightarrow 4l + jet$

- Simplest: Naïve-NWA method wery fast but inaccurate !
- Intricate: Computing stable particle produced amplitudes accurate but costly !

Intermediate solutions (MadSpin based on FLMW approach).

--P. Artoisenet et al. JHEP 03 015(2013) & S.Frixione et al JHEP 04 081(2007)

- a) Generate the NLO events for the undecayed production.
- b) Construct the virtualities of resonances and momentum reshuffling. reserve off-shell effects
- c) Generate the decay of resonance uniformly. narrow width approximation
- d) Unweighting procedure *rejection or acceptance condition*

$$V_{\max}(X) = \frac{d\sigma_{\text{no-dk}}}{d\mathbf{x}}(X) \times W^{dk}$$

Spin correlation and off-shell effects are reserved at tree-level accuracy !

12/18/2016

III. Numerical results $pp \rightarrow \cdots \rightarrow 4l + jet$

Retain the spin-correlation and off-shell effects fairly well at NLO calculation !

The MadSpin is used to decay resonance rather than naïve-NWA !

Distributions of Z-boson leptonic decays

12/18/2016

III. Numerical results- $pp \rightarrow ZZ + \gamma$

$\sqrt{s} = 14 \text{ TeV}$	Frixione isolation			fragmentation function				
	inclusive	exclusive	inclusive		ive	exclusive		
$\sigma^{ m LO}/[{ m fb}]$	23.816(:			95% 72%	Nume QCD c	rical comparable v corrections !	vith	
$\delta_{ m EW}/[\%]$	-6.		.76	76				
$\delta_{\gamma-\mathrm{ind}}/[\%]$	0.02	0.004	0.02		2	0.002	Pheno	omenological negligible !
$\delta_{ m QCD}/[\%]$	67.4	52.6	63.9)	48.6		
$\delta_{ m NLO}/[\%]$	56.11	42.29	52.85		5	38.56		
$\sigma^{ m NLO}/[m fb]$	$37.18(4)^{+2.41\%}_{-1.89\%}$	$33.89(4)^{+1.48\%}_{-1.31\%}$	36.	40(2)	⊦3.07% -1.75%	$33.00(2)^{+1.16\%}_{-1.37\%}$		

Table 1: The LO, NLO QCD+EW corrected integrated cross sections and the corresponding relative corrections at the 14 TeV LHC by taking $p_{T,\gamma}^{\text{cut}} > 20 \text{ GeV}, |y_{\gamma}| < 2.5$. The results are given in two photon-jet separation methods (see section 2.3.3) by applying the jet veto condition $p_{T,\text{jet}}^{\text{cut}} < 100 \text{ GeV}$ as well as without it.

Reduce scale dependence ! (further by jet veto)

12/18/2016

III. Numerical results- $pp \rightarrow ZZ + \gamma$

EW correction is significant in the high energy region !

Figure 6: The distributions in the leading Z-boson transverse momentum at LO, NLO QCD and NLO QCD+EW accuracy for $pp \rightarrow ZZ + \gamma + X$ at the 14 TeV LHC (left). The relative corrections for corresponding NLO QCD and NLO QCD+EW are also present (right).

12/18/2016

Figure 13: The distributions in the leading and next-to-leading negatively lepton transverse momentum (upper box) and relative deviation (lower box) for $pp \rightarrow ZZ + \gamma \rightarrow 4\ell + \gamma + X$ at the 14 TeV LHC.

12/18/2016

- > We completed the first NLO QCD+EW corrections for ZZ + jet and $ZZ + \gamma$ productions at LHC.
- The jet-photon separation is proper coped the with quark-to-photon fragmentation and Frixione isolation.
- EW corrections relative small in the integrated cross section, but non-negligible especially in high energy region.
- > The spin correlation and off-shell effects are partially retained by using MadSpin.

Thank You !

