18 December 2016 Second China LHC Physics Workshop **KARRI FOLAN DIPETRILLO**

Z+JETS @ 13 TEV IN ATLAS

Institute of High Energy Physics Chinese Academy of Sciences

INTRODUCTION

Motivation

- Powerful test of perturbative QCD
- Important background for SM Higgs production & BSM searches
- Clean experimental signature & high cross sections make for precise measurement

Scope of the analysis

- \blacktriangleright Z \rightarrow II + jets @ 13 TeV in ATLAS, 3.16 fb⁻¹
- Inclusive & exclusive jet multiplicities
- Ratios of inclusive jet multiplicities
- \triangleright p_T (leading jet) for Z + 1 jet events
- ▶ p_T (leading jet) for $Z + \ge 1-4$ jets & Z + 1 jet
- Leading jet rapidity for $Z + \ge 1$ jet events
- ► H_T for $Z + \ge 1$ jet events
- $\Delta \phi_{ii}$ for Z + \geq 2 jet events
- m_{ii} for $Z + \ge 2$ jet events
- Comparisons made to state of the art generators and fixed order predictions
- ATLAS-CONF-2016-046

$Z \rightarrow \mu\mu + jets$

Karri Folan DiPetrillo - CLHCP 2016

3

EVENT SELECTION

Data quality cuts and hard scatter vertex

Single electron/muon triggers

pt > 25 GeV electrons: $|\eta| < 1.37 \parallel 1.52 < |\eta| < 2.47$ muons: $|\eta| < 2.4$ medium quality, isolated, vertex cuts

> anti-kT R=0.4 pT > 30 GeV |y| < 2.4

2 opposite sign leptons, same flavor $71 < m_{||} < 111 \text{ GeV}$

INITIAL SELECTION:

TRIGGER:

LEPTON SELECTION:

JETS:

Z BOSON:

SIGNAL MODELING

Monte Carlo Generators Normalized to NNLO predictions

Flat 5% theoretical uncertainty

LO

NLO

Karri Folan DiPetrillo - CLHCP 2016

Fixed Order Predictions PDF and scale uncertainties QED FSR & parton-to-hadron corrections

BLACKHAT + SHERPA:

 $Z+\geq 1-4$ jets NLO CT14 scale ~ $H_T/2$

N JETTI: Z+≥1jet NNLO CT14 scale ~ sqrt [$m^2_{II} + \Sigma (p_T^{jet})^2$]

New!!!

BACKGROUNDS

Oetector level electron channel di-lepton invariant mass and inclusive N_{jets} (above)

- ▶ Top and diboson co-dominant backgrounds contribute ~1% for Z+≥1 jet to 10% for Z+≥7 jets
- Multijet background fraction 0.4 % for $Z+\ge 1$ jet to 1-2% for $Z+\ge 7$ jets
- W and Z backgrounds < 0.01%

Karri Folan DiPetrillo - CLHCP 2016

riant mass and inclusive N_{jets} (above) ~1% for Z+≥1 jet to 10% for Z+≥7 jets for Z+≥7 jets

UNFOLDING OF DETECTOR EFFECTS

- Iterative Bayesian Unfolding
 - Use signal MC to "invert" detector effects (acceptance, resolution, etc) on background subtracted data
 - Using Alpgen+Pythia 6 to unfold to particle level
 - Fiducial Volume
 - ▶ p_T lepton > 25 GeV, |η(lep)| < 2.5
 - ▶ p_T jet > 30 GeV, |y(jet)| < 2.5</p>
 - ▶ ∆R(l,jet) < 0.4</p>
 - 71 GeV < mll < 111 GeV</p>

Karri Folan DiPetrillo - CLHCP 2016

Particle level N_{jets}

- Systematic uncertainties are propagated through the unfolding

Systematic source	$+ \ge 0$ jet	$+ \ge 1$ jet	$+ \geq 2$ jets	$+ \geq 3$ jets	+ ≥ 4 jets	$+ \geq 5$ jets	$+ \ge 6$ jets	$+ \ge 7$ jets	
Electron Trigger	0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.8	
Electron Selection	1.2	1.6	1.8	2.0	2.2	2.7	2.9	4.1	
JES	< 0.1	6.1	8.0	10.3	12.8	15.0	21.7	23.7	Silter
JER	< 0.1	3.1	3.0	3.6	4.5	5.5	4.7	2.4	
JVT	< 0.1	1.3	2.0	2.7	3.3	3.8	5.4	6.5	
Pile-up	0.4	< 0.1	< 0.1	0.2	0.3	0.7	0.3	1.5	
Luminosity	2.1	2.2	2.2	2.3	2.4	2.5	2.6	2.8	
Unfolding	2.0	2.0	2.0	2.1	2.0	2.0	2.1	2.6	
Background	0.1	0.3	0.5	1.0	1.5	3.2	6.0	12.5	JET ENERGY SCALE:
Syst. uncertainty	3.2	7.8	9.4	11.9	14.6	17.3	24.0	28.3	Dominant source of uncertainty
Stat. uncertainty	0.1	0.2	0.5	1.0	1.9	3.9	8.2	17.7	Dominant source of uncertainty.
Systematic source	$+ \ge 0$ jet	$+ \ge 1$ jet	$+ \geq 2$ jets	$+ \geq 3$ jets	+ ≥ 4 jets	$+ \geq 5$ jets	$+ \ge 6$ jets	$+ \ge 7$ jets	
Muon Trigger	0.4	0.4	0.4	0.5	0.5	0.4	0.8	3.3	
Muon Selection	0.8	0.9	1.0	1.1	1.1	1.6	2.3	3.7	
JES	< 0.1	6.3	8.2	10.2	12.2	15.3	19.2	21.7	
JER	< 0.1	3.1	3.1	3.6	4.2	4.5	5.1	3.2	
JVT	< 0.1	1.3	2.1	2.7	3.4	4.1	5.0	4.7	
Pile-up	0.4	0.1	0.1	0.2	0.2	0.7	0.4	2.6	
Luminosity	2.1	2.2	2.2	2.3	2.4	2.5	2.6	2.7	
Unfolding	2.0	2.0	2.0	2.1	2.0	2.1	2.8	4.7	
Background	0.2	0.4	0.6	0.9	1.6	4.0	7.4	13.7	
Syst. uncertainty	3.1	7.8	9.5	11.7	13.9	17.4	22.3	27.8]
Stat. uncertainty	0.1	0.2	0.4	0.9	1.8	3.5	7.7	17.3]

Karri Folan DiPetrillo - CLHCP 2016

Relative systematic and statistical uncertainties (in %) on electron and muon inclusive N_{jet} cross sections

COMBINATION OF ELECTRON AND MUON CHANNELS

- Combination done using χ^2 minimization, treating correlated systematics as nuisance parameters
 - Central Value:
 - bin-to-bin uncorrelated uncertainties (statistical)
 - bin-to-bin correlated uncertainties but independent of e/μ datasets (lepton systematics)
 - Remaining uncertainties (jet, luminosity, pileup systematics) are averaged after combination

Jet multiplicity	Measured cross section $\pm (\text{stat.}) \pm (\text{syst.}) \pm (\text{lumi.})$ [pb]									
		$Z \rightarrow$	ee		$Z \to \mu \mu$					
≥ 0 jets	$747 \pm$	$1\pm$	$18\pm$	16	$743 \pm$	$1\pm$	$17\pm$	16		
≥ 1 jets	$117.7\pm$	$0.3 \pm$	$8.8\pm$	2.5	$117.4 \pm$	$0.2 \pm$	$8.8\pm$	2.5		
≥ 2 jets	$27.6\pm$	$0.1\pm$	$2.5\pm$	0.6	$27.8 \pm$	$0.1\pm$	$2.6\pm$	0.6		
≥ 3 jets	$6.24 \pm$	$0.06 \pm$	$0.73\pm$	0.15	$6.37 \pm$	$0.06 \pm$	$0.73 \pm$	0.15		
$\geq 4 \text{ jets}$	$1.51 \pm$	$0.03 \pm$	$0.22\pm$	0.04	$1.53 \pm$	$0.03 \pm$	$0.21\pm$	0.04		
≥ 5 jets	$0.371\pm$	$0.014\pm$	$0.063\pm$	0.009	$0.359 \pm$	$0.013\pm$	$0.062\pm$	0.009		
≥ 6 jets	$0.088\pm$	$0.007\pm$	$0.021\pm$	0.002	$0.074 \pm$	$0.006\pm$	$0.016\pm$	0.002		
≥ 7 jets	$0.0200 \pm$	$0.0036 \pm$	$0.0056 \pm$	0.0006	$0.0159 \pm$	0.0027 ± 0.0027	0.0044 ± 0	0.0004		

INCLUSIVE JET MULTIPLICITY CROSS SECTIONS AND RATIOS

Cross Sections

LEADING JET PT FOR VARIOUS JET MULTIPLICITIES

- Fundamental observable for Z+jets process
 - probes pQCD at a large range of scales
 - LO: Alpgen+Pythia6and MadGraph+CKKWL model the leading jet p⊤ too hard
 - NLO: Sherpa, MadGraph FxFx, and BlackHat are in good agreement over the full p_T range
 - ▶ NNLO: N_{jetti} models Z+≥1 jet p_T spectrum very well

Karri Folan DiPetrillo - CLHCP 2016

INVESTIGATING JET VETOS

- Exclusive N_{jet} Cross sections
 - MC discrepancies when depending only on Parton Shower
- For Z+1 jet events, p_T (jet)
 - probes validity of predictions at high QCD scales, even though veto is at a constant low scale (30 GeV)

12

A TEST OF SCALE: H_T

- H_T Scalar sum of the pT of all visible objects
 - Common search variable to separate heavy physics
 - Often used as scale variable in pQCD
 - Sherpa and MadGraph FxFx in good agreement
 - LO predictions, Alpgen and MadGraph CKKWL tend to overestimate hard jets
 - \blacktriangleright BlackHat underestimates cross section at high H_T (missing) contributions from higher jet multiplicities)
 - Njetti recovers agreement by going to NNLO

COMMON SEARCH VARIABLES: m_{JJ} AND $\Delta \phi_{JJ}$

- m_{JJ} partial cancellation of systematics
 - often used to separate BSM physics from Z+jets
 - MadGraph CKKWL models m_{JJ} too hard
- Angular distribution, $\Delta \phi_{JJ}$
 - correlated with mJJ
 - preference for back-to-back jets well modeled by all predictions

14

CONCLUSIONS

- - Measurement extends up to $Z+\geq 7$ jets!
 - Precision ranging from 3% to 27%!
- Assessed modeling of state of the art generators
 - \blacktriangleright LO: Alpgen and MadGraph CKKWL overestimate contributions from high p_T jets
 - NLO: Sherpa 2.1 and MadGraph FxFx in overall agreement with data
- Comparisons to fixed order predictions
 - ▶ BlackHat+Sherpa for $Z+\geq 1-4$ jets (NLO)
 - ▶ NEW: NNLO Njetti for $Z+\geq 1$ jet
- IHEP Contributions
 - Karri Folan DiPetrillo, Lianyou Shan, Joao Guimaraes da Costa
- Future Work
 - paper to be submitted in January
 - w/ more statistics can probe statistically limited regions of phase space: eg. boosted Zs, VBF, pdfs

Karri Folan DiPetrillo - CLHCP 2016

• First measurement of Z+jets inclusive and differential cross sections with 3.2 fb⁻¹ of 13 TeV data

BACKUP: MULTIJET BACKGROUND ESTIMATION

- Multijet Template:
 - Invert electron ID
 - Drop electron isolation requirement
 - Select two same sign electrons
 - Subtract non-multijet processes
- Estimating contribution in Signal Region
 - fit multijet template and non multi-jet processes in dielectron invariant mass window
 - pre & post-fit distributions at right

Karri Folan DiPetrillo - CLHCP 2016

BACKUP: SYSTEMATIC UNCERTAINTIES

- Relative systematic uncertainties on fiducial cross sections
 - Inclusive jet multiplicity (top)
 - leading jet pT (bottom)
 - electron channel (right)
 - muon channel (left)

BACKUP: SHERPA 2.2

is applied at event level, derived from event generation with the strict scale prescription

Karri Folan DiPetrillo - CLHCP 2016

The Sherpa 2.2 sample has been produced with a simplified scale setting prescription in the multi-parton matrix elements, to improve the event generation speed. A theory-based reweighting of the jet multiplicity distribution

