Latest results on the SM Higgs boson in the WW decay channel using the ATLAS detector

ATLAS-CONF-2016-112

C. Bertella Second China LHC Physics Workshop: CLHCP 2016

$H \rightarrow WW^* \rightarrow |v|v$

- WW channel well-suited to exploring rare production modes and searching at highness
- Large branching ratio: 22 %
- Good S/B from a clean dilepton signature

- Higgs boson couplings measurement essential SM consistency test
- Search for rare production modes
- Provide a template for searching additional states at high mass
 - More detail in Weimin SONG's talk on Sunday

$H \rightarrow WW^* \rightarrow IvIv @ RunI$

H→WW*→lvlv: Signal Topology

- Higgs boson final state: $H \rightarrow WW^* \rightarrow lvlv$
 - 2 leptons from Higgs tend to have small angular separation due to the spin 0
 - Final state can not be fully reconstructed due to the presence of neutrinos
 - A transverse mass m_T can be calculated without the unknown longitudinal neutrino momenta $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{\ell\ell})^2}$

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ \ell\ell} + p_{\mathrm{T}}^{\
u
u}
ight)^2 - \left| \ oldsymbol{p}_{\mathrm{T}}^{\ \ell\ell} + oldsymbol{p}_{\mathrm{T}}^{\
u
u}
ight|^2},$$

 Production modes investigated @ 13 TeV with 5.8 fb⁻¹: VBF and WH

 Direct access to the Higgs boson couplings to gauge bosons

C. Bertella

17-December-2016

VBF channel

$\mathbf{VBF} H \to WW \to lvlv$

- Electro-weak process with small theoretical uncertainty
 - No color flow between the two partons, unique topology of two energetic jets with large rapidity separation

Analysis Strategy:

- Only the different flavour channels: $e\mu$, μe
- Selection criteria are applied on: m_{ll} , $m_{\tau\tau}$, lepton and jet centrality

Multivariate technique

(BoostDecisionTree) is used to separate the signal from the main background processes

BDT distribution used to extract the signal strength

discriminating variables into one final discriminant -> Better xi < c1 xi > c1 separation What is Decision Tree? xj > c2 xj < c2 xj > c3 xj < c3 Consecutive set of questions (nodes) xk > c4 xk < c4Why Boosting? Misclassified events are weighted higher so that future learners

concentrate on these

Event Selection

Main backgrounds:

- **ggF** estimated with MC simulation
- **WW**: estimated with MC simulation
- \rightarrow Top and Z \rightarrow $\tau\tau$: shape form MC simulation, NF estimated with data
- W+jets: data-driven from events with one lepton satisfying only loose but failing tight ID criteria; fake factors measured in a di-jet sample

Cuts	SR	Top CR	Ζ→ττ	
Njets	>1	>1	>1	
b-jets	0	1	0	reject Top/select
mττ	<66.2 GeV	<66.2 GeV	$ m_{\tau\tau}-m_Z $ <25 GeV	reject/select Z+jet
mil	-	_	<80 GeV	∧jet
O LV	\checkmark	\checkmark	\checkmark	jet ₀
CJV	\checkmark	\checkmark	\checkmark	
MVA>-0.8	\checkmark	\checkmark	\checkmark	

- The analysis uses a MVA to classify an event as signal- or background-like:
 - Signal: VBF
 - Bkg: Top,VV, Z+jets and ggF
- The training is performed after N_{b-jet}=0
- It uses information related to the production and decay topology
 - Leptons: $m_{ll}, \Delta \phi_{ll}, m_T$
 - Jets: m_{jj} , Δy_{jj}
 - Jets/Leptons: $\eta_{centrality}$, ΣM_{lj} , p_T^{tot}

BDT Modelling

- BDT modelling has been checked in the **Top** and $Z \rightarrow \tau \tau$ CRs and **SR**
 - Good data/MC region in all the regions
- Important shape different between signal and background in SR

🕂 Data

αοΤ 📃

ww

W+iets

H_{ggF} -- H_{VBF} × 10

0.2

0.4

0

-0.8 -0.6 -0.4 -0.2

ATLAS Preliminary

 $100 - \sqrt{s} = 13 \text{ TeV}, 5.8 \text{ fb}^{-1}$

 $H \rightarrow WW \rightarrow e\mu + \mu e$

120₁

80

60

40

20

Events / 0.3

WH channel

$WH \rightarrow WWW \rightarrow lvlvlvlv$

- Test of the WH production
- Direct access to the Higgs boson couplings to W boson

Analysis Strategy

- Final state: 3 leptons (e/ μ) with charge ±1 and E_T^{miss}
 - Origin of lepton with unique charge: Higgs decay
- Cut-Based Analysis:
 - Selection criteria are applied on: m_{ll} , m_{ll} , E_T^{miss} and ΔR
- 2 signal regions:
 - Z-dominated: at least one Z-candidate, 75% of the signal
 - Z-depleted: no Z-candidate, 25% of the signal

Nomenclature

- I_o: lepton with unique charge
- l_1 : lepton closest in ΔR to l_0
- ▶ l₂: remaining one
- ▶ SF: Same Flavour
- OS:Opposite Sign

Event Selection: Signal regions

Category	Z-dominated SR ≥ 1 SFOS pair		Z-depleted SR no SFOS pair	Main backgrounds:
Preselection	Three isola $t_{\rm t}$ $\geq 1 \text{ lepto}$	ated leptons (p_T) otal charge $= \pm 1$ on matches to the	>15 GeV) e trigger	 VV: WZ/Wγ*, ZZ*, Zγ VVV
Background Rejection reject WZ, ZZ and Z+jets	$E_{\rm T}^{\rm miss} > 50 \text{ GeV}$ $ m_{\ell^+\ell^-} - m_Z > 2$	$N_{\text{jet}} \leq 1, N_{b\text{-jet}} = 0$ 25 GeV) reject Top - reject Z+jet $Z/\gamma^* \rightarrow ee$ veto	• Top: mainly ttbar
reject WZ/Wy* reject non prompt leptons	$m_{\ell^+\ell^-}^{\min} > 12 \text{ GeV}$	$m_{\ell^+\ell^-}^{\rm max} < 200 {\rm ~GeV}$	$m_{\ell^+\ell^-}^{\min} > 6 \text{ GeV}$	► Z+jets
$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ topology		$\Delta R_{\ell_0\ell_1} < 2.0$	Higgs Spin O	

¹⁷⁻December-2016

Event Selection: Control regions

Process Reference SR		Cut	
Top quark Z-depleted one lep		at least 1 jet one b-jet one lepton without an isolation requirement	
WZ/Wγ*	Z-dominated	≥1 SFOS pair with m _{ll} -m _z <25 GeV	

Additional CRs defined for for Zγ, Z+jet used to extract Normalisation Factors

C. Bertella

17-December-2016

Results

Systematic Uncertainties

- Leading sources of uncertainties on the measured signal strength, μ_{VBF} and μ_{WH}
 - Analyses limited by the data statistic
 - Important impact of the MC statistic

Source	$\Delta \mu_{\mathrm{VBF}}/\mu_{\mathrm{VBF}}$ [%]
Statistical	+60 / -50
Fake factor, sample composition	+18 / -15
MC statistical	± 15
VBF generator	+14 / -5
WW generator	+11 / -7
QCD scale for ggF signal for $N_{\rm jet} \ge 3$	+8 / -7
Jet energy resolution	+8 / -7
b-tagging	+8 / -6
Pile-up	+8 / -6
QCD scale for ggF signal for $N_{\rm jet} \ge 2$	± 6
JES flavour composition	+6 / -4
WW renormalisation scale	± 5
Total systematic	+33 / -26
Total uncertainty	+70 / -50

Source	$\Delta \mu_{WH} / \mu_{WH}$ [%]
Statistical	+120 / -100
MC statistical	+60 / -70
Pile-up	+22 / -26
Jet energy resolution	+22 / -23
Top-quark generator	+17 / -20
b-tagging	+10/-11
Top-quark PS/UE	+7/-8
JES flavour comp.	+8/-5
JES η intercalibration	+7/-6
$WZ/W\gamma^*$ generator	+7/-6
Top-quark QCD scales	+6/-7
$WZ/W\gamma^*$ resum. scale	± 5
Total systematic	+70 / -80
Total uncertainty	+140 / -130

Summary

- ▶ VBF and WH $H \rightarrow WW^* \rightarrow lvlv$ analyses performed using the 5.8 fb⁻¹ of 2015+2016 data
- The observed (expected) signal significance at $m_{\rm H}$ = 125.0 GeV is 1.9 σ (1.2 σ) for VBF and 0.77 σ (0.24 σ) for W H
- The signal strengths are $\mu_{VBF}=1.7^{+1.1}_{-0.9}$ and $\mu_{WH}=3.2^{+4.4}_{-4.2}$
- Corresponding cross section times branching ratio are

• $\sigma_{VBF} \times BR = 1.4^{+0.9}$ -0.7 pb -> 95% CL upper limit 3.0 pb

• $\sigma_{WH} \times BR = 0.9^{+1.3}_{-1.2} \text{ pb} \longrightarrow 95\% \text{ CL upper limit 3.3 pb}$

Future steps:

 \bigcirc Analyse the full 2015+2016 dataset ~36/fb

Perform the inclusive XS measurement of gluon fusion and VBF

• Working on fiducial and differential measurements

Thanks for the attention!

MC Samples

Monte Carlo generators used to model the signal and background processes with the corresponding product of cross section and the branching ratio for the Higgs boson production ar 13 TeV

Mode	MC generator	$\sigma \cdot \mathcal{B} (pb)$	Background	MC generator
ggF VBF WH ZH	Powheg [13,14,15]+Pythia 8 [19] Powheg +Pythia 8 Powheg +Pythia 8 (Minlo [25]) Powheg +Pythia 8 (Minlo)	$\begin{array}{c} 10.38\substack{+0.58\\-0.77}\\ 0.808\pm 0.021\\ 0.293\pm 0.007\\ 0.189\substack{+0.008\\-0.007}\end{array}$	$\begin{array}{c} q\bar{q}/g \rightarrow \ell\ell\ell\ell, \ell\nu\ell\ell, \ell\nu\ell\nu\\ gg \rightarrow \ell\ell\ell\ell, \ell\nu\ell\nu\\ \mathrm{EW} \ \ell\ell\ell\ell, \ell\nu\ell\nu\\ \mathrm{EW} \ \ell\ell\ell\ell, \ell\nu\ell\ell, \ell\nu\ell\nu\\ q\bar{q}/g \rightarrow WW, Z^{(*)}Z^{(*)} \rightarrow \ell\nu\ell\nu\\ t\bar{t}, tW\\ t\bar{t}W/Z, tZ\\ W\gamma, Z\gamma\\ Z+\mathrm{jets}\\ \mathrm{VBF} \ q\bar{q} \rightarrow (Z \rightarrow \tau\tau)q\bar{q}\\ WWW, WWZ, ZZW, ZZZ\end{array}$	Sherpa [16] Sherpa Sherpa Powheg +Pythia 8 Powheg +Pythia 6 [38] MadGraph 5 [17] Sherpa MadGraph 5 Sherpa Sherpa

Event Selection

Main backgrounds:

- **ggF** estimated with MC simulation
- WW: estimated with MC simulation
- Top and $Z \rightarrow \tau \tau$: shape form MC simulation, NF estimated with data
- W+jets: data-driven from events with one lepton satisfying only loose but failing tight ID criteria; fake factors measured in a di-jet sample

- The analysis uses a BDT to classify an event as signal- or background-like:
 - Signal: VBF
 - Bkg: Top,VV, Z+jets and ggF
- The training is performed after N_{b-jet}=0
- It uses information related to the production and decay topology
 - \rightarrow Leptons: $m_{ll}, \Delta \phi_{ll}, m_T$
 - Jets: m_{jj} , Δy_{jj}
 - Jets/Leptons: $\eta_{centrality}$, ΣM_{lj} , p_T^{tot}

18

- The analysis uses a BDT to classify an event as signal- or background-like:
 - Signal: VBF
 - Bkg: Top,VV, Z+jets and ggF
- The training is performed after N_{b-jet}=0
- It uses information related to the production and decay topology
 - Leptons: $m_{ll}, \Delta \phi_{ll}, m_T$
 - Jets: m_{jj} , Δy_{jj}
 - Jets/Leptons: $\eta_{centrality}$, ΣM_{lj} , p_T^{tot}

- The analysis uses a BDT to classify an event as signal- or background-like:
 - Signal: VBF
 - Bkg: Top,VV, Z+jets and ggF
- The training is performed after N_{b-jet}=0
- It uses information related to the production and decay topology
 - Leptons: $m_{ll}, \Delta \phi_{ll}, m_T$
 - Jets: m_{jj} , Δy_{jj}
 - Jets/Leptons: $\eta_{centrality}$, ΣM_{lj} , p_T^{tot}

BDT Modelling

- Correlation plots of BDT classification variables in the signal region of BDT
- For variable v_X and v_Y in row x and column y, the distributions of < v_X > versus <v_Y>, and vice versa, are shown for each pair of training variable in the BDT as well as the correlation of each training variable with BDT

Event Selection: Control regions

Results

C. Bertella

17-December-2016