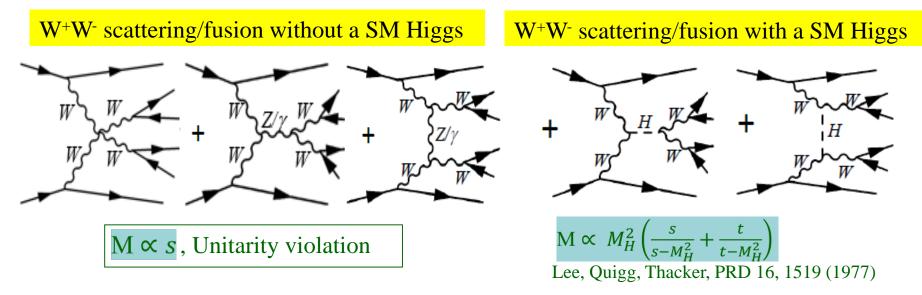
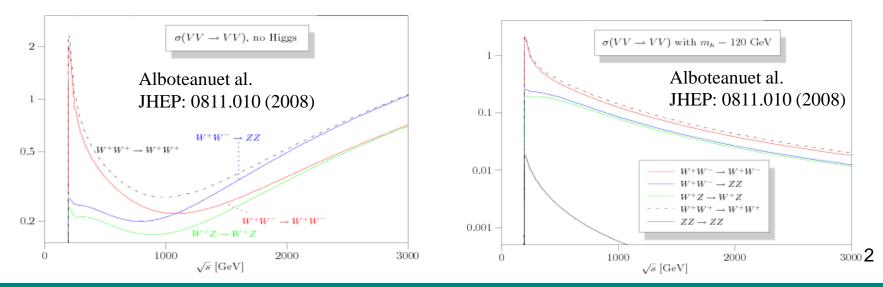


Search for heavy neutral resonances in vector boson fusion qq -> lvlvqq with the ATLAS detector


Liang Han, Minghui Liu, Guangyi Zhang

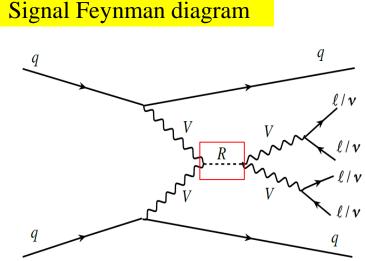
University of Science and Technology of China



Second China LHC Physics Workshop (CLHCP 2016) Peking University, 16-19 December 2016

Vector boson fusion (VBF)

The unitarity can be restored by adding a Higgs scalar with exactly the SM HVV coupling



Guangyi Zhang (USTC / IPAS)

Second CLHCP 2016

Motivation

- Sensitive to the new physics:
 - Unknown issues about Higgs discovered at the LHC:
 - ☐ fully or only partially unitarizes the VBF amplitude ?
 - $\Box \quad \text{the coupling } H \rightarrow VV \text{ is exactly the one that SM predicted } ?$
 - New resonances needed:
 - Any deviation of the coupling SM HVV would hint at new physics
 - New resonances will be needed to restore the unitarity

If new resonance R has no/weak coupling to fermion,

VBF will be a good channel

- $qq \rightarrow Rqq \rightarrow \ell^+ \nu \ell^- \bar{\nu} qq \ (\ell = e, \mu)$
- two charged leptons, E_T^{miss} ,

two forward jets

• large $\Delta \eta_{jj} \& m_{jj}$

New resonances

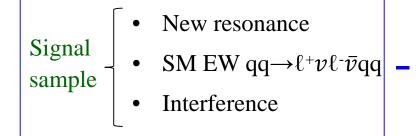
Signal Model

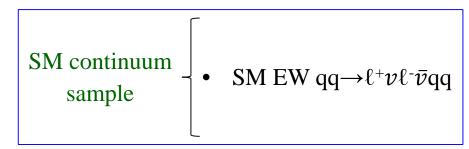
- Benchmark Model: resonance with K-matrix unitarization using EWChL
- New resonances: only couples to the longitudinal component of the vector boson, not to fermions, and thus can only be produced by VBF processes

Type	Spin J	Isospin I	Electric Charge	Γ/Γ_0	
σ	0	0	0	6	σ : scalar isoscalar
ϕ	0	2	, -, 0, +, ++	1	φ: scalar isotensor
ρ	1	1	-, 0, +	$\frac{4}{3} \left(\frac{v^2}{m^2} \right)$	ρ: vector isovector
, f	2	0	0	1	f: tensor isoscalar
J	2	0	0	$\frac{1}{5}$	t: tensor isotensor
ť	2	2	, -, 0, +, ++	$\frac{1}{30}$	

 $\Gamma_0 = g^2 m^3 / 64 \pi v^2$

Analysis status

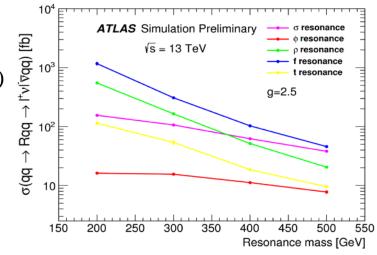

Free parameters: coupling & mass


- In 2016, a search is performed for the first time for neutral resonances above the Higgs boson mass in VBF (CONF note for ICHIP: ATLAS-CONF-2016-053)
- ▶ In 2017, aim to have a common paper with HWW analysis for Moriond

Second CLHCP 2016

Signal sample

Signal definition:



= Signal (New resonance + interference)

Using Whizard+Pythia8 to generate both samples

- EW samples are generated with fixed g=2.5
 (g, coupling of new resonance to gauge bosons)
- 5 different resonance types (σ, φ, ρ, f and t):
 m=200 -500 GeV

Signal Xsec vs. resonance mass

Data/MC samples

- Data samples:
 - 25 ns data in 2015, Luminosity = 3.2 fb^{-1}
- ➤ MC samples:
 - $t\bar{t}$: Powheg
 - Wt: Powheg
 - Z+jets: MadGraph (QCD) and Sherpa (EW)
 - diboson: Sherpa (QCD) and Whizard (EW)
 - Zγ: Sherpa
 - ttV: MadGraph
 - SM Higgs: Powheg (ggH and VBF)
- MC corrections:
 - Lepton energy/momentum scale/resolution
 - Lepton Reco/ID/Iso/Trig effSF
 - Jet energy scale/resolution, b-tag effSF
 - Pile-up reweighting

Object definitions

≻ Electron:

- Kinematic cuts: $p_T > 25$ GeV, $|\eta| < 2.47$ (veto on $1.37 < |\eta| < 1.52$)
- Quality: track and calorimeter requirements
- Isolated electron

➤ Muon:

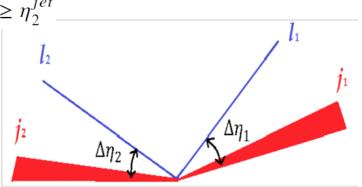
- Kinematic cuts: $p_T > 25$ GeV, $|\eta| < 2.5$
- Quality: track requirements
- Isolated muon

≻ Jet:

- Reconstructed using anti- k_t algorithm with a radius parameter of R = 0.4
- Kinematic cuts: $p_T > 30~GeV~(>50~GeV~if~2.5 <|\eta| < 4.5$), $|\eta| < 4.5$
- Pile-up removal
- b-jets: BDT tagger with 85% efficiency working point

 $\succ E_T^{miss}$:

- Calculated using calibrated objects, track soft terms
- $E_T^{miss} > 30 \text{ GeV}$

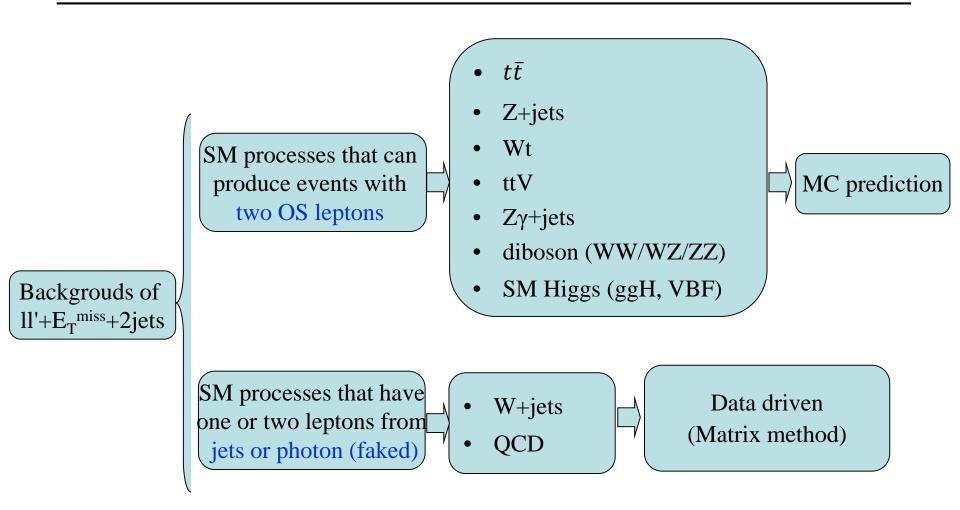

Event selection

- 1 event preselection requirements, see text
- 2 exactly two leptons with $p_{\rm T} > 25 {\rm ~GeV}$
- 3 pass single lepton trigger and trigger matching
- 4 third lepton veto
- 5 dilepton mass $m_{\ell\ell} > 40 \text{ GeV}$
- $6 \qquad q_{\ell_1} \times q_{\ell_2} < 0$
- 7 $|m_{\ell\ell} m_Z| > 25$ GeV in the *ee* and $\mu\mu$ channels
- 8 at least two selected jets with $p_T > 30$ (50) GeV and $|\eta| < 2.5$ (2.5 < $|\eta| < 4.5$)
- 9 b-jet veto
- $10 \quad E_{\rm T}^{\rm miss} > 35 \,\,{\rm GeV}$
- 11 $m_{ij} > 500 \text{ GeV}$
- $12 \quad |\Delta \eta_{jj}| > 2.4$
- $13 \quad \eta_{j_1} \times \eta_{j_2} < 0$
- 14 lepton centrality $\zeta > -0.5$
- $15 \quad f_{\rm recoil} < 2.0$

Lepton centrality and f_{recoil}

\succ Lepton centrality ζ :

- $\zeta = \min\{\eta_1^{jet} \eta_1^{\ell}, \eta_2^{\ell} \eta_2^{jet}\}$ where $\eta_1^{\ell} \ge \eta_2^{\ell}$ and $\eta_1^{jet} \ge \eta_2^{jet}$
- ς in VBF topology tends to be positive
- To reduce the background from strong production of double vector boson processes (*ς* > -0.5)


\succ f_{recoil}:

- Measures the strength of the recoil system relative to the dilepton system
- Useful to reject the $Z/\gamma^* \to \ell \ell$ background
- $f_{recoil} < 2$

Second CLHCP 2016

Background estimations

Validation regions

Dominant background sources :

- For ee/ $\mu\mu$ channel: Z+jets & $t\bar{t}$
- For $e\mu$ channel: $t\bar{t}$

Definitions of validation regions :

• Selection criteria listed on slide 8 is assumed unless otherwise specified

Region	Purpose	Requirements
Z+jets VR	Validate $Z+$ jets background modelling	no m_{jj} cut,
		$ m_{\ell\ell} - m_Z < 25 \text{ GeV} (\text{only } ee \text{ and } \mu\mu \text{ channels})$
$t\bar{t}$ VR	Validate $t\bar{t}$ background modelling	no m_{jj} cut,
		at least one b -tagged jet
low- m_{jj} VR	Validate low-mass background estimation	$m_{jj} < 500 { m ~GeV}$

Z pT reweighting for the Z+jets prediction:

- Some discrepancy is found between data & MC for Z pT distribution
- A reweighting function is derived to correct the MC prediction
- This reweighting function used in both VRs and SR

Data vs. predictions in the Z+jets/ $t\bar{t}$ VRs

Z+jets validation region:

Z+jets VR	ee	$\mu\mu$
Z+jets	$808 \pm 13 \pm 337$	$1686 \pm 20 \pm 721$
$t\overline{t}$	$17.2\pm0.7\pm4.5$	$25.5 \pm 0.9 \pm 6.2$
Wt	$1.6 \pm 0.2 \pm 0.5$	$2.5 \pm 0.2 \pm 0.5$
$diboson_QCD$	$14.2 \pm 1.4 \pm 2.6$	$20.9 \pm 1.7 \pm 5.4$
$diboson_EW$	$0.7 \pm 0.0 \pm 0.1$	$0.9 \pm 0.1 \pm 0.1$
$Z\gamma$	$29.0\pm0.9\pm8.4$	$48.5 \pm 1.2 \pm 15.2$
Higgs	$0.1 \pm 0.0 \pm 0.3$	$0.1 \pm 0.0 \pm 0.0$
ttV	$0.1 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$
fake-lepton	$6.9 \pm 2.9 \pm 1.6$	$0.0 \pm 0.0 \pm 0.0$
Total background	$878 \pm 13 \pm 347$	$1784 \pm 20 \pm 741$
Data	804	1630

> $t\bar{t}$ validation region: Reasonable agreement of data and the SM prediction observed.

$t\bar{t}$ VR	ee	$\mu\mu$	$e\mu$	
Z+jets	$14.1 \pm 1.1 \pm 5.6$	$24.6 \pm 2.0 \pm 8.7$	$2.8 \pm 0.5 \pm 1.4$	
$t \bar{t}$	$247 \pm 3 \pm 24$	$364 \pm 3 \pm 35$	$954 \pm 5 \pm 92$	
Wt	$17.8 \pm 0.6 \pm 2.0$	$26.7 \pm 0.8 \pm 2.7$	$64.6 \pm 1.2 \pm 7.4$	
$diboson_QCD$	$1.6 \pm 0.2 \pm 0.4$	$2.1 \pm 0.2 \pm 0.5$	$4.6 \pm 0.2 \pm 1.0$	
$diboson_EW$	$0.2 \pm 0.0 \pm 0.0$	$0.2 \pm 0.0 \pm 0.1$	$0.7 \pm 0.0 \pm 0.2$	
$Z\gamma$	$1.5 \pm 0.2 \pm 0.7$	$1.8 \pm 0.2 \pm 1.0$	$0.0 \pm 0.0 \pm 0.2$	
Higgs	$0.1 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$	$0.2 \pm 0.0 \pm 0.1$	
ttV	$0.3 \pm 0.0 \pm 0.0$	$0.4 \pm 0.0 \pm 0.1$	$0.9 \pm 0.0 \pm 0.1$	
fake-lepton	$4.0 \pm 1.7 \pm 0.5$	$0.0 \pm 0.0 \pm 0.0$	$2.2 \pm 2.0 \pm 0.3$	
Total background	$287 \pm 3 \pm 29$	$420 \pm 4 \pm 40$	$1030 \pm 6 \pm 98$	
Data	279	444	1042	

Guangyi Zhang (USTC / IPAS)

12

Data vs. predictions in the low-m_{ii} VR

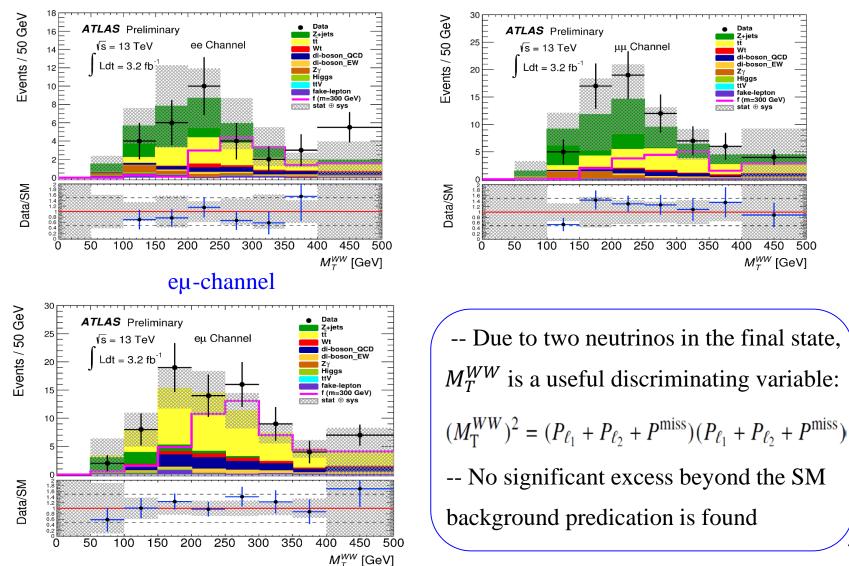
➢ low-m_{ii} validation region:

• $m_{ii} < 500$ GeV, based on all selections on slide 8

low- m_{jj} VR	ee	$\mu\mu$	$e\mu$	
Z+jets	$30 \pm 2 \pm 13$	$58 \pm 3 \pm 24$	$7 \pm 1 \pm 2$	
$t \overline{t}$	$21 \pm 1 \pm 5$	$30 \pm 1 \pm 8$	$73 \pm 1 \pm 19$	
Wt	$2.4 \pm 0.2 \pm 0.6$	$2.9 \pm 0.3 \pm 0.7$	$6.8 \pm 0.4 \pm 1.6$	
$diboson_QCD$	$3.3 \pm 0.3 \pm 0.4$	$5.2 \pm 0.3 \pm 0.5$	$13.4 \pm 0.4 \pm 1.7$	
$diboson_EW$	$0.0 \pm 0.0 \pm 0.1$	$0.3 \pm 0.0 \pm 0.1$	$0.6 \pm 0.0 \pm 0.1$	
$Z\gamma$	$4.3 \pm 0.4 \pm 1.4$	$7.1 \pm 0.5 \pm 2.5$	$0.1 \pm 0.1 \pm 0.1$	
Higgs	$0.1 \pm 0.0 \pm 0.0$	$0.3 \pm 0.0 \pm 0.1$	$0.5 \pm 0.0 \pm 0.0$	
ttV	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$	
fake-lepton	$3.2 \pm 1.0 \pm 0.1$	$0.0 \pm 0.0 \pm 0.0$	$1.2 \pm 0.7 \pm 0.1$	
Total background	$64 \pm 3 \pm 17$	$103 \pm 3 \pm 29$	$103 \pm 2 \pm 21$	
Data	51	95	118	

Reasonable agreement of data and the SM prediction is observed.

Signal region


Signal region:

• Based on all selections on slide 8

	ee	$\mu\mu$	$e\mu$
Z+jets	$17.6 \pm 1.2 \pm 11.6$	$36.6 \pm 2.3 \pm 19.0$	$6.7 \pm 1.2 \pm 1.7$
$tar{t}$	$12.1 \pm 0.6 \pm 3.2$	$18.2 \pm 0.7 \pm 4.6$	$46.9 \pm 1.2 \pm 12.1$
Wt	$1.2 \pm 0.2 \pm 0.3$	$1.5 \pm 0.2 \pm 0.5$	$3.1 \pm 0.3 \pm 0.8$
$diboson_QCD$	$3.1 \pm 0.3 \pm 0.5$	$4.2 \pm 0.3 \pm 0.7$	$10.2 \pm 0.3 \pm 1.6$
$diboson_EW$	$1.2 \pm 0.1 \pm 0.1$	$1.7 \pm 0.1 \pm 0.2$	$3.6 \pm 0.1 \pm 0.4$
$Z\gamma$	$2.1 \pm 0.3 \pm 0.6$	$3.8 \pm 0.3 \pm 0.7$	$0.1 \pm 0.0 \pm 0.1$
Higgs	$0.3 \pm 0.0 \pm 0.1$	$0.4 \pm 0.0 \pm 0.1$	$0.8 \pm 0.0 \pm 0.1$
ttV	$0.0 \pm 0.0 \pm 0.0$	$0.0 \pm 0.0 \pm 0.0$	$0.1 \pm 0.0 \pm 0.0$
fake-lepton	$0.6 \pm 0.6 \pm 0.1$	$0.0 \pm 0.0 \pm 0.0$	$1.3 \pm 0.7 \pm 0.1$
$\sigma \ (m = 300 \text{ GeV})$	5.1 $\pm 0.3 \pm 0.6$	$7.5 \pm 0.3 \pm 0.9$	$14.4 \pm 0.4 \pm 1.9$
$\phi \ (m = 300 \text{ GeV})$	$0.3 \pm 0.1 \pm 0.2$	$1.0 \pm 0.1 \pm 0.4$	$1.6 \pm 0.2 \pm 0.4$
$\rho \ (m = 300 \text{ GeV})$	$8.0 \pm 0.4 \pm 1.6$	$11.7 \pm 0.4 \pm 1.4$	$24.1\pm0.6\pm3.1$
$f \ (m = 300 \text{ GeV})$	$15.6 \pm 0.6 \pm 1.9$	$22.6 \pm 0.8 \pm 1.9$	$50.4 \pm 1.2 \pm 3.8$
$t \ (m = 300 \text{ GeV})$	$3.3 \pm 0.2 \pm 0.4$	$4.7 \pm 0.2 \pm 0.6$	$6.9 \pm 0.3 \pm 1.1$
Total background	$38.2 \pm 1.6 \pm 13.9$	$66.4 \pm 2.5 \pm 21.6$	$72.6 \pm 1.9 \pm 14.8$
Data	40	74	86

No significant excess above the SM background expectation is observed.

Data vs. predictions in the signal region

ee-channel

Guangyi Zhang (USTC / IPAS)

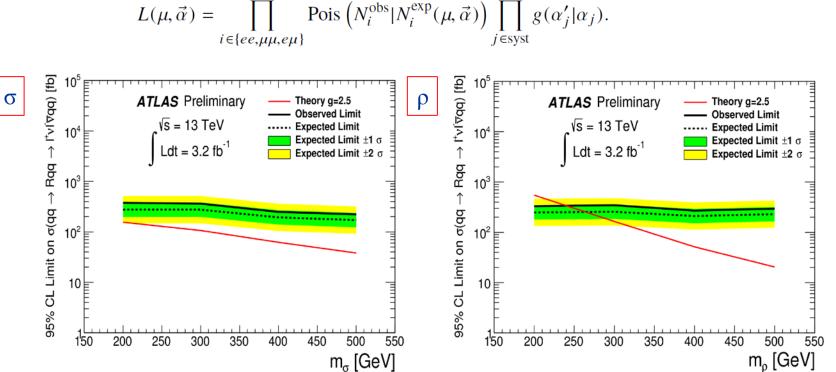
Second CLHCP 2016

µµ-channel

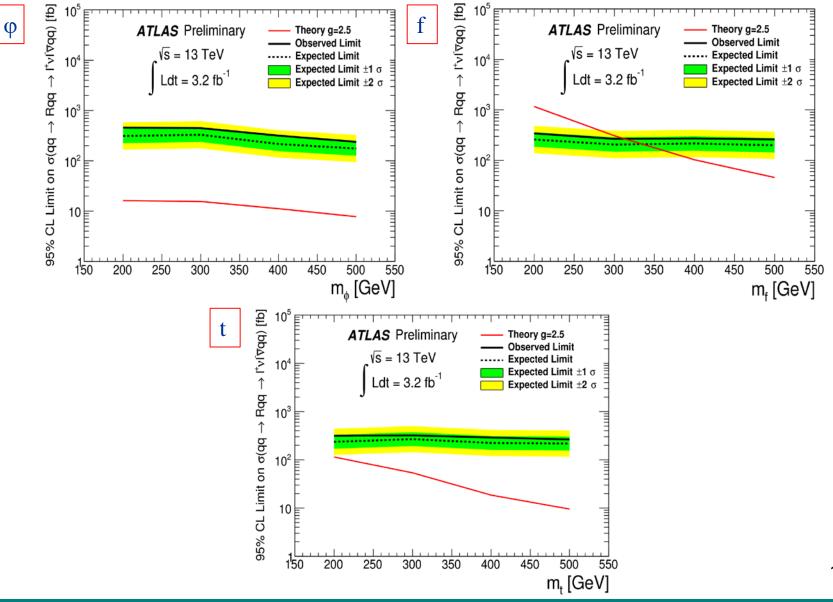
15

Systematic uncertainties

 \blacktriangleright Experimental uncertainties(%) on the backgrounds in the signal region:


Source	ee	$\mu\mu$	$e\mu$
JES and JER	33%	29%	12%
b-tagging	8%	7%	16%
$E_T^{\mathrm{m}iss}$ modelling	7%	6%	1%
Lepton	3.1%	2.2%	1.5%
Trigger	0.1%	0.5%	0.5%
Matrix method	0.2%	0.0%	0.1%
Z boson $p_{\rm T}$ reweighting	0.5%	0.4%	0.0%
MC statistics	4.1%	3.7%	2.6%
Luminosity	2.1%	2.1%	2.1%
Total experimental uncertainty	35%	31%	20%

> Experimental uncertainties on signal considered (JES/JER, b-tagging, E_T^{miss} etc.)


- Theoretical uncertainties on the production Xsec of the backgrounds
- Additional shape systematic uncertainties for two dominant backgrounds
 - $(Z+jets, t\bar{t})$ are included.

95% CL upper limits I

- ▶ No significant excess above the SM background expectation is observed.
- > 95% CL upper limits are derived on σ x Br for new resonances (σ , ϕ , ρ , f and t)
- > Number counting as inputs to set limit due to limited signal statistics
- > The frequentist method (CLs), is used to compute 95% CL upper limits

95% CL upper limits II

Guangyi Zhang (USTC / IPAS)

Second CLHCP 2016

18

Summary

- A search for a heavy neutral resonance in vector boson fusion using 3.2 fb⁻¹ of data at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector was presented:
 - Presented Z+jets, $t\bar{t}$ and low-m_{jj} validation regions, and reasonable agreement of data and SM prediction observed.
 - No significant excess above the SM background expectation is observed in signal region.
 - First sets of limits are obtained on the production cross section times branching ratio of five types of new resonances (σ , ϕ , ρ , f, t).
 - CONF note for ICHIP: ATLAS-CONF-2016-053
 - Aim to have a common paper with HWW analysis for Moriond 2017