Search for high mass particles in $WW \rightarrow l\nu \ l\nu$ and $ZZ \rightarrow ll \ \nu\nu$ final states at ATLAS

Weimin Song

Shandong University wesong@cern.ch

December 18, 2016

Overview

- We human beings are not satisfied with the current framework of physics: dark matter, mass hierarchy, asymmetry between matter and anti-matter, quantum gravity, naturalness.....are still not understood
- We are looking for something new by different methods according to tastes: precision measurement of the parameters of the SM, putting a detector on the space station or underground, searching new particles on colliders......
- Di-boson final state is sensitive to the structure of SM, and is a good choice for searching new physics on colliders: the 2 TeV hint in WW/WZ, the 750 GeV dis-appearance in $\gamma\gamma$
- On LHC, the leptonic signature is more clean than the hadronic one

Overview

- We human beings are not satisfied with the current framework of physics: dark matter, mass hierarchy, asymmetry between matter and anti-matter, quantum gravity, naturalness.....are still not understood
- We are looking for something new by different methods according to tastes: precision measurement of the parameters of the SM, putting a detector on the space station or underground, searching new particles on colliders......
- Di-boson final state is sensitive to the structure of SM, and is a good choice for searching new physics: the 2 TeV hint in WW/WZ, the 750 GeV dis-appearance in $\gamma\gamma$
- On LHC, the leptonic signature is more clean than the hadronic one

This talk is about searching for new particles in di-boson final states by leptonic decays:

 $WW \rightarrow l\nu \ l\nu \ \text{and} \ ZZ \rightarrow ll \ \nu\nu$

Search for a high-mass Higgs boson decaying into

 $WW \rightarrow I\nu I\nu$

ATLAS-CONF-2016-074

Introduction to the analysis

- The information of the two leptons (different flavor) and E_T^{miss} is used to identify the signal by defining a transverse mass: m_T
- The single lepton triggers are used for both electron and muon
- Main backgrounds are WW, top, W+Jet, Drell-Yan, non-WW diboson, h(125)
- Signal interpretation: narrow width approximation and large width approximation higgs-like particles produced by ggF (VBF) in the mass range between 300 (400) GeV and 3000 GeV

Signal region and control region definition

SR_{ggF}	SR _{VBF1J}	SR_{VBF2J}			
Preselection cuts: $p_{\rm T}^{\rm lead} > 25 {\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$, 3rd lepton veto, $m_{\ell\ell} > 10 {\rm GeV}$					
$N_{b ext{-jet}} = 0$					
$ \Delta\eta_{\ell\ell} < 1.8$					
$m_{\ell\ell} > 55 \mathrm{GeV}$					
$p_{\mathrm{T}}^{\mathrm{lead}} > 45 \mathrm{GeV}$					
$p_{\rm T}^{\rm sublead} > 30{\rm GeV}$					
$\max(m_{\rm T}^W) > 50 {\rm GeV}$					
Inclusive in N _{jet} but	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$			
excluding VBF1J	$ \eta_{j} > 2.4$	$m_{jj} > 500 \mathrm{GeV}$			
and VBF2J phase space	$\min(\Delta \eta_{j\ell}) > 1.75$	$ \Delta y_{jj} > 4$			

WW CR _{ggF}	Top CR _{ggF}	WW CR _{VBF1J}	Top CR _{VBF}	
Preselection cuts: $p_{\rm T}^{\rm lead} > 25 {\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$, 3rd lepton veto, $m_{\ell\ell} > 10 {\rm GeV}$				
$N_{b\text{-jet}} = 0$	$N_{b-\text{jet}} = 1$	$N_{b-\text{jet}} = 0$	$N_{b ext{-jet}} \ge 1$	
$ \Delta \eta_{\ell\ell} > 1.8$	$ \Delta \eta_{\ell\ell} < 1.8$	$(\Delta \eta_{\ell\ell} > 1.8 \text{ or}$	_	
$m_{\ell\ell} > 5$		$m_{\ell\ell} < 55 \mathrm{GeV})$	_	
$p_{\rm T}^{\rm lead} > 4$	5 GeV	$p_{\rm T}^{\rm lead} > 25 {\rm GeV}$	$p_{\mathrm{T}}^{\mathrm{lead}} > 25 \mathrm{GeV}$	
$p_{\mathrm{T}}^{\mathrm{sublead}} >$	30 GeV	$p_{\rm T}^{\rm sublead} > 25 {\rm GeV}$	$p_{\mathrm{T}}^{\mathrm{lead}} > 25\mathrm{GeV}$ $p_{\mathrm{T}}^{\mathrm{sublead}} > 15\mathrm{GeV}$	
$\max(m_{\mathrm{T}}^{W})$	> 50 GeV	_		
Excludin	g VBF	VBF1J	VBF1J or VBF2J	
VBF1J and VBF2J		phase space	phase space	

Data/MC comparison in top control region

The post-fit normalisation factors (NF) from a simultaneous fit to all signal and control regions are $0.95^{+0.09}_{-0.08}$ and $0.96^{+0.13}_{-0.14}$ in the ggF (left) and the VBF (right) CRs.

The post-fit purity is 87% in the ggF and 81% in the VBF category.

Data/MC comparison in WW control region

The NF is $1.3^{+0.2}_{-0.1}$ for quasi-inclusive ggF (left) control region, and $1.2^{+0.5}_{-0.3}$ for VBF 1 Jet (right) control region.

The purity is 52% for quasi-inclusive ggF CR and 45% for VBF 1 Jet CR.

Data driven W + Jets background estimation

Why the W + Jets could be the background?

One jet is mis-identified as a lepton by one of the following ways: heavy flavour hadron decays, punch through, gamma conversion......

Why data driven?

W+Jet cross section is very large, thus we can not afford a MC simulation with the same luminosity as data; and the fake mechanism is too complicated to be simulated well.

Fake factor method

Data/MC comparison in signal region

The data is consistent with background

ggF (left), VBF-1Jet (middle), VBF-2Jet (right)

Result and interpretation

Upper limit for high mass higgs-like particles is set

NWA-ggF (left), NWA-VBF (middle), LWA-ggF (right)

Search for a high-mass new particle decaying into

 $ZZ \rightarrow II \ \nu\nu$

ATLAS-CONF-2016-056

Introduction to the analysis

 The final state signature is same as the analysis before, however the two leptons are from the same Z boson decays, thus the definition of the transverse mass is different

$$\begin{split} (m_{\mathrm{T}}^{ZZ})^2 &\equiv \left(\sqrt{m_Z^2 + \left|p_{\mathrm{T}}^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|E_{\mathrm{T}}^{\mathrm{miss}}\right|^2}\right)^2 - \left|\vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^2 \\ &= m_{\mathrm{T}} - \sqrt{(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - |\mathbf{p}_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}|^2} \end{split}$$

- Main background: ZZ, WZ, Z+Jets, non-resonant-II
- Signal interpretation: narrow width higgs-like particle, RS graviton

Event selection

Pre-selection					
Exact one pair of ee or $\mu\mu$					
$p_T > 30 \ (20) \ \text{GeV}$					
$ m_{II}-m_{Z} <15$ GeV					
Topology selection					
Variable	Cut value	Function			
E _T miss	>120 GeV	Reduce Z+Jets			
ΔR_{II}	<1.8	Z is boosted			
$ \Delta\phi(ec{ ho}_T^{ extit{II}},ec{E}_T^{ extit{miss}}) $	>2.7	Momentum balance			
$ p_T^{missjet} - p_T^{II} /p_T^{II}$	< 0.2	Momentum balance			
$ \Delta\phi(jets, \vec{E}_T^{miss}) $	>0.4	Reduce jet mis-measurement			
p_T^{II}/m_T	< 0.7	Reduce bad E_T^{miss}			
Number of b-jets	=0	Reduce top background			

Data and MC comparison after pre-selection

The background modeling is good even at pre-selection level

Data and MC comparison in the signal region

The data is consistent with background

Result and interpretation

higgs-like particle (left), graviton (right)

Summary

- New particles are searched in $WW \to l\nu \ l\nu$ and $ZZ \to ll \ \nu\nu$ final states!
- All of them escaped from the excellent ATLAS detector!
- The capture is still ongoing, and we have more data now!

Your questions and Comments are welcome!