Baryon to meson ratio in jets and underlying events in pp, p-Pb, Pb-Pb collisions measured in ALICE

Yonghong Zhang for the ALICE Collaboration

Central China Normal University

18/12/2016

- Physics motivation
- ALICE setup
- Analysis strategy
- Results and discussion
- Summary and outlook

Baryon to meson enhancement in Pb-Pb and p-Pb observed w.r.t. pp collisions \bigcirc

- Involving several phenomena
 - 1. Bulk effect (radial flow, coalescence/recombination)?
 - 2. Jet fragmentation (?)

• $\Lambda/K_{\rm S}^0$ ratio in jets and underlying events

Separation of soft and hard processes

8

ALICE setup

- Advantage: Particle Identification
- Data sample: pp collisions at 7 TeV, p-Pb collisions at 5.02 TeV, Pb-Pb collisions at 2.76 TeV
- op collisions with 127 MB events, collected in 2010

Analysis strategy

V⁰ candidate selection

- Select V⁰ candidates by decay topology
- Signal extract from invariant mass distribution
- Acceptance: $|\eta| < 0.75$

Jet reconstruction

- Charged particles $|\eta| < 0.9$, $p_T > 150 \text{ MeV}/c$
 - With excluding V⁰ daughters
- anti- $k_{\rm t}$, R = 0.4 and 0.2, $|\eta_{\rm jet}| < 0.35$

V⁰s matched with jets (JC)

· V⁰s and jets are reconstructed independently

Match V⁰s with jets by angular distance between the jet axis and the V⁰ direction

$$\sqrt{(\eta_{V^0} - \eta_{jet})^2 + (\varphi_{V^0} - \varphi_{jet})^2} < R_{matching}$$

V⁰s in underlying events (UE)

- PC (default): V⁰s in the perpendicular cone
- NJ: V^os in event without jet within $p_T > 5 \text{ GeV}/c$
- OC: V⁰s outside the jet cone

5

 $M_{\pi^{+}\pi^{-}}$ (GeV/*c*²)

Corrected density of V⁰s in jets with R_{jet} = 0.4

- The spectra normalised per area density and corrected by efficiency and feed down
- V⁰s in jets: JC V⁰s UE V⁰s
- Density of UE V⁰s is smaller than that of JC V⁰s, the effect is only relevant at low-p_T, overall the effect is small

Corrected density of V⁰s in jets with R_{jet} = 0.2

- Density of JC V⁰s for R = 0.2 is higher than that for R = 0.4
 - V⁰ transverse profile peaked around jet axis

Spectra of strange particles in charged jets in Pb-Pb collisions

• $V^0 p_T$ spectra are obtained with same method as that in pp analysis

- Additional correction for impact of UE fluctuations applied

Comparison to PYTHIA simulations

- V⁰ p_T spectra in data follow similar slope as predicted by PYTHIA simulations
 - Λ shows clear enhancement at low p_T (< 4 5 GeV/c)
 - Indication of that we need better reference measurements to become more quantitative

$\Lambda/{\rm K}_{\rm S}^0$ ratio in UE and Jets with different jet radius

- 1. $K_{\rm S}^0$ and Λ in the UE region consistent with inclusive measurements
- 2. Λ/K_S^0 ratio in jets is unambiguously different from the UE (and inclusive)
- 3. UE subtraction most relevant at low- p_{T}
- 4. Slight decrease of the ratio with decreasing $R(V^0, jet)$
- 5. The ratio is flat with p_{T,V^0} > 3 GeV/*c*, and consistent with inclusive V⁰s at high p_T

Comparison with Pb-Pb, p-Pb collisions

Pb-Pb

• Λ/K_S^0 ratio in jets significantly lower than ratio for inclusive V⁰s observed in different collision systems

- Λ/K_S^0 ratio in jets are consistent with inclusive at high p_T in pp, p-Pb and Pb-Pb collisions
- The ratio has no significant $p_T^{\text{jet,ch}}$ dependence

Summary

- V^os in jets have been studied in pp, p-Pb and Pb-Pb in ALICE
- Λ/K⁰_S ratio in jets are in agreement among different collision systems within systematical uncertainties
- Difference is found unambiguously between V⁰ in jets and in UE
- A p_T spectra in jets in Pb-Pb collisions show an enhancement at low p_T (< 4-5 GeV/*c*) w.r.t. PYTHIA simulations while being consistent with PYTHIA at higher p_T (> 5 GeV/c)
- Hint of medium modified jet fragmentation effect differs between baryons and mesons

Outlook

- Λ/K_S^0 ratio in jets with multiplicity dependence in pp and p-Pb
- Λ/K_S^0 ratio in jets with centrality dependence in Pb-Pb
- Λ/K_S^0 ratio in jets with energy dependence with RUN II Pb-Pb at 5 TeV

Detail cuts

selection	value
Track Kink index	< 1
$ \eta $	< 0.8
TPC refit flag	kTRUE
number of crossed rows in TPC	> 70
number of findable rows in TPC	> 0
crossed rows / findable rows ratio	> 0.8
TPC dE/dx	$< 5 \sigma$

Table 4.1: Default selections for V^0 daughter tracks.

selection	value
V^0 2D decay radius	in $[0.5,200]$ cm
negative track DCA to PV	> 0.06 cm
positive track DCA to PV	> 0.06 cm
DCA between V^0 Daughters	$< 1\sigma$
$\cos heta_{pointing}$	$> 0.97 \; ({ m K_S^0}), > 0.995 \; (\Lambda)$

Table 4.2: Default cuts for V^0 decay topological selection

Normalisation

$$\begin{split} \frac{d\rho}{dp_{\rm T}}_{Inclusive} &= \frac{1}{N_{event} * (acceptance)} * \frac{dN}{dp_{\rm T}} \\ \frac{d\rho}{dp_{\rm T}}_{JC} &= \frac{1}{N_{jet}\pi r^2 * factor_{overlapped}} * \frac{dN}{dp_{\rm T}} \\ \frac{d\rho}{dp_{\rm T}}_{PCL} &= \frac{1}{2 * N_{jet}\pi r^2 * factor_{overlapped}} * \frac{dN}{dp_{\rm T}} \\ \frac{d\rho}{dp_{\rm T}}_{PCU} &= \frac{1}{2 * N_{jet}\pi r^2 * factor_{overlapped}} * \frac{dN}{dp_{\rm T}} \\ \frac{d\rho}{dp_{\rm T}}_{OC} &= \frac{1}{N_{event} * (acceptance - (Njet/Nevent) * factor_{overlapped} * \pi r^2)} * \frac{dN}{dp_{\rm T}} \end{split}$$

factor describe the overlap effect of multi-jets events

Analysis strategy

- 1. Tag hard scattering with charged particle jets (jet pt>10 GeV/c)
- Reconstruct Λ and K_s^0 within "Jet 2. Region"
- 3. Reconstruct Λ and K_s^0 within "UE" Region"
- Correct V⁰s in the Jet Region and UE 4. Region.
- 5. Subtract the Λ and K_s^0 in "UE Region" from Jet Region"
- 6. Correct V⁰s by Feeddown correction

Yield and ratio of Λ and K_s^0 in jets

V⁰ candidate selection

Decay channels

 $\mathrm{K0}_{\mathrm{S}} \rightarrow \pi^+\pi^-$ (BR = 0.692) and $\Lambda \rightarrow \mathrm{p}\pi^-$ (BR = 0.639)

- Decay topology based on five variables
- Acceptance: $|\eta| < 0.75$
- Details: see in the backup

V⁰ signal extraction

- Fit invariant mass with gaussian plus a linear function in each $p_{\rm T}$ bin
 - extract the mean and sigma
- Define the side bands and signal region
 - signal region: $|M_{inv} M_{mean}| < N\sigma$, default N=6
 - side bands: $N\sigma < |M_{inv} M_{mean}| < 2N\sigma$
- Background subtraction bin counting
- fit with linear function from side bands and interpolate into signal region

ALI-PREL-69631

Jet reconstruction

- Charged particles $|\eta| < 0.9$, $p_T > 150 \text{MeV}$
- anti-k_T, R=0.4 and 0.2, |η_{jet}|<0.35

V⁰-jet matching(JC)

- V^os and Jets are reconstructed independently
- Match V⁰s and jets with a matching radius

• Underlying V⁰s(UE)

- PC: V⁰s in perpendicular cones
- NJ: V^os in event w/o jet in $p_T > 5 \text{ GeV}/c$
- OC: V⁰s outside matching cone
- PC used as the default UE estimator, NJ and OC are used for estimating uncertainty on underlying event subtraction

$$\sqrt{(\eta_{V^0} - \eta_{jet})^2 + (\varphi_{V^0} - \varphi_{jet})^2} < R$$

• Efficiency of V⁰s

- Efficiency depends on η
- η distribution of V^0s in jets is different from that of inclusive V^0s

- An η weighted method used to correct the efficiency in jets and UE.
- The η weighted efficiency for V⁰s in jets are higher than inclusive V⁰s in lower p_{T} , and consistent in high p_{T}
- The η weighted efficiency or V⁰s in UE is constant with Inclusive V⁰s

• Feeddown correction for Λ from Ξ

- Secondary V⁰s in jet cone have been corrected after underlying event subtraction
- The difference between the feed down fraction from Inclusive V⁰s in data and that of V⁰s in jets is taken as uncertainty(3%)

- Uncertainty consists of V⁰ reconstruction, jet p_T scale, Underlying subtraction and Feeddown subtraction
- Systematic uncertainties for V⁰ yield in jets is less than 18%, UE subtraction dominates at lower p_T , V⁰ reconstruction dominates at higher p_T
- The systematic uncertainty of L/K ratio is nearly 11%

