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Overview and outline

The main topics of these lectures are non-geometric backgrounds in string theory,
and their application to axion-monodromy inflation. The latter is a mechanism
proposed by Silverstein and Westphal in 2008, which realizes large-field inflation
within string theory.

The lecture is split into two parts, developing first the framework of non-geometric
backgrounds in string theory, and afterwards applying them to axion-monodromy
inflation. The outline for is the following:

A. Non-geometric backgrouds in string theory

1. Introduction

2. T-duality

3. The three-torus with H-flux

4. Supergravity description

B. Axion-monodromy inflation

1. Main idea

2. Realization
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A Non-geometric backgrounds in string theory

A.1 Introduction

We begin with a brief introduction to and motivation for non-geometric back-
grounds, and how such backgrounds can be constructed.

Non-geometry

• Let us consider the closed string, and observe that it can be decomposed
into a left-moving and into a right-moving sector, which are independent of
each other. Both of these sectors have to be a conformal field theory (CFT)
with central charge cL = cR = 15, and restrictions from modular invariance
can arise at one-loop;

closed string = CFTL ⊗ CFTR . (A.1)

• A general closed-string solution has left- and right-moving sectors different
from each other

CFTL 6= CFTR . (A.2)

In this case, roughly-speaking, the string sees a different background in the
left- and in the right-moving sector.

• For the closed string this is a perfectly natural situation, however, from a
point-particles point of view this is not possible.

• Since we cannot associate a geometric point-particle interpretation to the
above backgrounds, they are also called non-geometric. (However, this term
is not rigorously defined, and is used differently depending on the context.)

Duality transformation

• Even though some non-geometric backgrounds are known explicitly (Gepner
models, asymmetric orbifolds, . . . ), these are usually CFT constructions
valid only at particular points in moduli space. But, if one wants to learn
more about these configurations and perturb away from the CFT points,
supergravity formulations are more useful.
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• One way to obtain non-geometric backgrounds in a supergravity frame-
work is to start from a geometric background, and perform a duality trans-
formation leading to a non-geometric one. (Duality transformations map
solutions of a theory to new solutions of a potentially different theory.)

• In order to follow this idea, one needs a duality transformation which acts
differently in the left- and right-moving sector. Such a duality is T-duality.

• Indeed, T-duality changes the sign of the right-moving sector of the closed
string but leaves the sign of the left-moving invariant

X(z, z) = XL(z) +XR(z)
T-duality−−−−−−→ X̃(z, z) = XL(z)−XR(z) . (A.3)

A.2 T-duality

Having identified T-duality as a potential tool to construct non-geometric back-
grounds, let us briefly review its basic features.

World-sheet perspective

• Roughly speaking, T-duality means that a string theory on a circle of radius
R describes the same physics as a theory on a circle with radius 1/R.

• More concretely, let us consider string-theory (a free boson) compactified
on a circle of radius R. The partition function reads (with q = e2πiτ )

Z(τ, τ ;R) =
1

|η|2
∑
m,n∈Z

q
α′
4 [mR+nR

α′ ]
2

q
α′
4 [mR−

nR
α′ ]

2

. (A.4)

4



• This partition function is invariant under R→ α′

R
, that is

Z(R) = Z(α′/R) . (A.5)

• This symmetry of the partition function is called T-duality. It means that
the spectrum stays invariant under the above replacement. (Note that our
discussion involved the one-loop partition function. However, the symmetry
of R→ α′/R is true for all genera.)

Target-space perspective

• Let us now move from the world-sheet perspective to a target-space de-
scription. That is, instead of studying the two-dimensional sigma model of
the string, we consider an effective theory in ten (or 26) dimensions.

• For definiteness, let us take a ten-dimensional spacetime (corresponding to
the superstring) and split it as

R1,9 → R1,9−d ×Md , d < 9 , (A.6)

where the compact d-dimensional spaceMd is assumed to have at least one
direction of isometry, denoted by θ in the following.

• On the target space, the massless degrees of freedom of the string in the NS-
NS sector are described by a metric Gab, an anti-symmetric Kalb-Ramond
two-form field Bab, and a dilaton φ.

• Now, the T-duality transformation R→ α′/R along a direction of isometry
θ reads as follows

G̃θθ =
1

Gθθ

,

G̃θa =
Bθa

Gθθ

, B̃θa =
Gθa

Gθθ

,

G̃ab = Gab −
GθaGθb −BθaBθb

Gθθ

, B̃ab = Bab −
GθaBθb −BθaGθb

Gθθ

.

(A.7)

The dilaton has to be shifted as follows

Φ = φ+
1

2
log

√
det G̃

detG
. (A.8)

Buscher - 1987

• We also remark that a T-duality transformation generically mixes compo-
nents of the metric G and the B-field.
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A.3 Prime example: the three-torus with H-flux

We now want to discuss the prime example for non-geometric backgrounds. It
is arises by applying T-duality transformations (Buscher rules) to a three-torus
with H-flux.

• Let us recall that H-flux is the (vacuum expectation value of the) exterior
derivative of the Kalb-Ramond B-field

H = dB . (A.9)

• This flux is subject to a quantization condition. In particular, for Σ3 ∈
H3(Md,Z) a three-cycle in Md, the H-flux has to satisfy

1

(2π
√
α′)2

∫
Σ3

H ∈ Z . (A.10)

H-flux background

• We start with a three-dimensional flat torus M3 = T3 with metric

ds2 = dx2 + dy2 + dz2 , (A.11)

and identifications x ∼ x+ 1, y ∼ y + 1, z ∼ z + 1.

• For the B-field we choose the following gauge

Byz = N x , ⇒ Hxyz = N , N ∈ Z . (A.12)

• When going around the circle in say the x-direction, we have the following
way of identifying the geometry:
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Geometric flux

• The z-direction of the above configuration is a direction of isometry. We
can therefore apply the Buscher rules and obtain

ds2 = dx2 + dy2 + (dz +N xdy)2 , B = 0 . (A.13)

• This background is also called a twisted torus, since the metric describes a
two-torus which is non-trivially fibered over a circle in the x-direction. The
corresponding identifications are

(x, y, z) ∼ (x+ 1, y, z −Ny) , y ∼ y + 1 , z ∼ z + 1 . (A.14)

• When going around the circle in the x-direction, we have the following way
of identifying the geometry:

• The so-called geometric flux is then determined from a vielbein basis

ex = dx , ey = dy , ez = dz +N xdy , (A.15)

for which the spin-connection and Lie bracket are computed as

ωzxy = N/2 , [ex, ey] = −Nez . (A.16)

The structure constants of the Lie algebra are then identified with the
geometric flux

fxy
z = −N . (A.17)

Scherk, Schwarz - 1979
Kachru, Schulz, Tripathy, Trivedi - 2002
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Non-geometric Q-flux

• Since the above background has another direction of isometry, we can pro-
ceed and apply a second T-duality transformation. Using again the Buscher
rules, now along the y-direction, we arrive at

ds2 = dx2 +
1

1 +N2x2

(
dy2 + dz2

)
, Byz = − Nx

1 +N2x2
. (A.18)

• Note that here the metric and B-field are well-defined locally, but not
globally. Indeed, when going around the circle say in the x-direction as
x → x + 1, the metric at x and at x + 1 do not just differ by a diffeomor-
phism. Similarly, the B-field does not just differ by a gauge transformation.

• However, if in addition to diffeomorphisms and gauge the transformations
the transition functions between charts are allowed to be T-duality trans-
formations, one obtains a consistent picture. Indeed, in the above example
(G,B) at x and x + 1 are related via a T-duality transformation – which
gave rise to the name T-fold for these spaces.

• The so-called non-geometric Q-flux is formally identified with

Qx
yz = N . (A.19)

Hellermann, McGreevy, Williams - 2002
Dabholkar, Hull - 2002

Hull - 2004

• However, through a different approach (generalized geometry) the Q-flux
can be determined as the derivarive of a bi-vector field βij as Qi

jk = ∂iβ
jk.

Non-geometric R-flux

• Even though there is no direction of isometry left, it has been argued that
one can formally apply a third T-duality transformation. This leads to
background with so-called R-flux

Rxyz . (A.20)
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• This flux can be expressed in terms of the bi-vector as Rijk = β[i|m∂mβ
jk].

• Here, the metric and B-field are not even locally well-defined. Further-
more, it has been found that this background gives rise to a non-associative
structure.

Bouwknegt, Hannabuss, Mathai - 2004
Shelton, Taylor, Wecht - 2005

Ellwood, Hashimoto - 2006
... - 2010

Summary

• To summarize, we studied T-duality transformations for a three-torus with
H-flux. This is the prime example for non-geometric backgrounds.

• We introduced non-geometric fluxes through a chain of T-duality transfor-
mations:

Habc
Tc←−−−−→ fab

c Tb←−−−−→ Qa
bc Ta←−−−−→ Rabc . (A.21)

The corresponding backgrounds are, respectively, the torus, the twisted
torus, the T-fold, and a non-associative space.

A.4 Supergravity description

We now want to embed this idea into a supergravity framework. More specifically,
we consider N = 1 supergravity.

The F-term potential

• The general form of a N = 1 supergravity action in four space-time dimen-
sions is as follows

S = Skin. −
∫
R3,1

(
VF + VD

)
?4 1 , (A.22)

where ?4 is the four-dimensional Hodge-? operator. Skin. denotes the kinetic
part, which will not be important here. The expressions VF and VD stand
for the F- and D-term potential. VF will be of interest here, while we do
not consider the D-term part.

• The F-term potential VF is computed in terms of the holomorphic super-
potential W , the Kähler potential K and the Kähler metric G as

VF = eK
(
GIJDIW DJW − 3

∣∣W ∣∣2) , (A.23)
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where a summation over repeated indices is understood. Here I runs over
all holomorphic fields of the theory while J labels the anti-holomorphic
ones.

• The so-called Kähler covariant derivative DαW is computed as

DIW = ∂IW +KIW , KI = ∂IK , (A.24)

where ∂IK denotes the derivative of the Kähler potential K with respect to
the field labelled by I.

• The matrix GIJ denotes the inverse of the Kähler metric GIJ which is
computed from the Kähler potential K in the following way

GIJ = ∂I∂J K . (A.25)

Type IIB orientifolds

• We now consider type IIB orientifold compactifications on Calabi-Yau three-
folds with fluxes. The relevant fields are

NS-NS sector g , B2 , φ ,

R-R sector C0 , C2 , C4 .
(A.26)

• Focussing on the moduli fields in the four-dimensional effective theory, we
have the axio-dilaton, G-moduli and Kähler moduli:

τ = C(0) + ie−φ ,

Ga = ca + τ ba ,

Tα = − i
2
καβγ t̂

β t̂γ + ρα +
1

2
καabc

abb − i

4
eφκαabG

a(G−G)b .

(A.27)

Grimm - 2005

– Here we have expanded components of the fields which are purely in
the internal space in bases of two-forms {ωA} and four-forms {σA} as

J = tαωα , B = baωa , C2 = caωa , C4 = ρασ
α . (A.28)

– Also, καβγ and καab are the triple intersection numbers.
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• Using the sum of even R-R potentials C = C(0) +C(2) +C(4), these moduli
can be encoded in a complex and even multi-form Φev

c as follows

Φev
c = eBC + ie−φ Re

(
eB+iJ

)
= τ +Gaωa + Tασ

α .
(A.29)

Benmachiche, Grimm - 2006

• We also mention that the complex-structure moduli are encoded in the
holomorphic three-form Ω as

Ω = XΛαΛ − FΛβ
Λ , zi =

X i

X0
. (A.30)

Superpotential

• When considering pure Calabi-Yau compactifications, no scalar potential
will be generated. However, this changes when turning on H- and F3-flux.

– The latter are vacuum expectation values of the fields strengths H =
dB and F3 = dC2.

– The corresponding superpotential reads

W =

∫
X

(
F3 − τH

)
∧ Ω . (A.31)

Gukov, Vafa, Witten - 1999

– Note that W depends on τ and the complex-structure moduli za.

• Next, we can re-write this superpotential in two steps as follows:

– First, we use the complex multi-form two write

W =

∫
X

(
F (3) −H ∧ Φev

c

)
∧ Ω . (A.32)

– Second, we recall that Ω is closed and so we have

W =

∫
X

(
F (3) + (d−H∧) Φev

c

)
∧ Ω . (A.33)

• We can now finally come back to the non-geometric fluxes.

– The superpotential is obtained by introducing the following twisted
differential

d−H∧ −→ D = d−H ∧ −F ◦ −Q • −R x . (A.34)
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– The (additional) fluxes can be interpreted as operators mapping

H ∧ : p-form → (p+ 3)-form ,

F ◦ : p-form → (p+ 1)-form ,

Q • : p-form → (p− 1)-form ,

R x : p-form → (p− 3)-form .

(A.35)

– Employing a local basis {dxi} and the contraction ιi satisfying ιidx
j =

δji , this mapping can be implemented by

H ∧ = 1
3!
Hijk dx

i ∧ dxj ∧ dxk ,

F ◦ = 1
2!
F k

ij dx
i ∧ dxj ∧ ιk ,

Q • = 1
2!
Qi

jk dxi ∧ ιj ∧ ιk ,

R x = 1
3!
Rijk ιi ∧ ιj ∧ ιk .

(A.36)

– The superpotential then finally reads

W =

∫
X

(
F (3) +DΦev

c

)
∧ Ω

=

∫
X

(
F (3) +−τ H −GaFa − TαQα

)
∧ Ω ,

(A.37)

where we denoted

Fa = F ◦ ωa = Fa
ΛαΛ + FaΛβ

Λ ,

Qα = Q • σα = QαΛαΛ +Qα
Λβ

Λ .
(A.38)

• Note that the superpotential, as it stands, contains all possible fluxes (ex-
cept the R-flux). It is therefore the most symmetric expression in these
quantities.

• We also mention that in general field strengths/fluxes are subject to Bianchi
identities. These are known, and can be reproduced by requiring D to be
nilpotent, D2 = 0.
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B Axion-monodromy inflation

For models of large-field inflation, the distance travelled by the inflaton has to be
larger than the Planck scale. Realizing such a scenario in effective field theory
– or string theory – is difficult since it not easy to maintain control over various
corrections. However, so-called axion-monodromy inflation is a possible solution.

B.1 Main indea

• In order to realize inflation, the potential V for the inflation field φ has
to be of a special form. In particular, it should be rather flat, which is
described by the so-called η- and ε- parameters

ε =
M2

Pl

2

(
V ′

V

)2

� 1 , η = M2
Pl

(
V ′′

V

)2

� 1 . (B.1)

• However, even if the potential satisfies the necessary conditions at tree-level,
higher-order corrections easily spoil them (η-problem).

• The following approach has been proposed to circumvent this problem:

– Consider a field φ with a shift symmetry φ → φ + a at all orders in
perturbation theory. In string theory, such fields are usually axions.
The shift-symmetry implies that no potential is generated for φ at the
perturbative level, i.e.

V (φ+ a)
∣∣∣
pert.

!
= V (φ)

∣∣∣
pert.

⇒ V (φ) = 0 . (B.2)

– On the other hand, non-perturbative corrections e2πiφ can induce a
potential of the form

V (φ) ∼ 1− cosφ , (B.3)

which breaks the continuous shift-symmetry to a discrete one as φ→
φ + a with a ∈ Z. The resulting theory is called natural inflation,
which has been shown to not allow for trans-Planckian field ranges.

– However, when slightly but explicitly breaking the shift symmetry by a
perturbative potential, the periodicity is broken. Hence, some features
of the periodic potential are preserved while the field range is enlarged.

Silverstein, Westphal - 2008
McAllister, Silverstein, Westphal - 2008
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• This idea can be visualized as follows:

motivation :: broken symmetry

�

V (�)

� �

shift symmetry axionic symmetry axion monodromy

To generate a potential for inflation, the shift symmetry has to be (weakly) broken.

[Freese, Frieman, Olinto - 1990]

◾ Can be achieved by instantons  ➞  natural inflation, …

[Silverstein, Westphal - 2008]

[McAllister, Silverstein, Westphal - 2008]

◾ by instantons + branes  ➞  axion-monodromy inflation,

◾ or by fluxes.

B.2 Realization

Let us now describe, how axion-monodromy inflation can be realized in type IIB
string theory. (For type IIA the story is similar, and will not be explained here.)

The setting

• The first question we have to address is, whether the axion is a closed-string
or an open-string field. Here we choose the closed-string sector.

• Next, for the closed-string sector, we have the following complex scalars
(part of N = 1 chiral multiplets) available:

τ , Ga , Tα , zi . (B.4)

Note that all of these contain an axion – in our conventions this is the real
part.

• Concerning the non-perturbative contributions,

– for τ a D(-1)-brane instanton can generate a contribution to the scalar
potential.

– For Ga a D1-brane instanton on a vanishing two-cycle would be the
relevant contribution.

– For Tα a D3-brane instanton on a four-cycle can generate a contribu-
tion to the scalar potential.

– Non-perturbative correction involving the complex-structure moduli
zi can be present, but only through corrections of the so-called pre-
potential. They will be more difficult to analyze, and so we do not
consider them here.

• Finally, we have to choose which contribution to the scalar potential should
break the shift symmetry. We have at our disposal the F- and the D-term
potential; here we choose the F-term potential.
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• To summarize, we choose a closed-string axion field as the inflaton, which
is contained in τ , Ga or Tα. We furthermore use D-brane instanton effects
to break the continuous shift symmetry, and the F-term potential to realize
axion-monodromy inflation.

• We also mention that that the breaking due to the explicit breaking has to
be tuned in order to be sufficiently small. On the other hand, for certain
scenarios higher-order corrections to the explicit breaking only involve the
value of the scalar potential itself. Hence, the latter are under control.

Biellemann, Ibanez, Valenzuela - 2015

A scenario

• We now become somewhat more concrete and develop a scenario for axion
monodromy inflation. As the inflaton, we take a Kähler modulus T?, but a
similar story works for τ or Ga.

• To generate a scalar F-term potential for axion-monodromy inflation, we
consider the superpotential with non-geometric fluxes and D3-brane instan-
ton corrections.

W = Wflux +Winstanton . (B.5)

• In order to have the Kähler moduli to appear, we have to consider Q-flux,
which leads to (recall equation (A.37))

Wflux =

∫
X

(
F (3) +−T?

[
Q?Λ +Q?ΛβΛ

])
∧ Ω . (B.6)

• For the non-perturbative instanton contribution, we take a D3-brane in-
stanton (and assume that the technical details are satisfied) wich gives

Winstanton = A e2π i T? , (B.7)

where A is a constant which in principle depends on other moduli as well.

• Plugging this superpotential into the scalar F-term potential (A.23) one
obtains the inflaton potential. The precise form can be rather involved,
and depends on the precise data of the background space.

• Recalling that we chose the inflaton as φ = ReT?, the resulting scalar
potential takes the schematic form

V ∼ AQ2 φ2 +BQφ+ C cosφ+D , (B.8)

with A,B,C,D depending on the other moduli. These can be determined
concretely, but they depend on the details of the model.
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Summary

• From the above example we see, that indeed axion-monodromy inflation can
be realized in string theory (for the Kähler axion). A similar mechanism
works for the axion in τ or in Ga. The crucial point here was to consider
non-geometric Q-flux and to consider D3-brane instantons.

• The main problem is to achieve a small breaking through the fluxes, which
implies some amount of fine-tuning of the flux parameters.

• Furthermore, the prefactors A,B,C,D in general depend on other mod-
uli fields than φ. One has to make sure that those do not interfere with
inflation, which is a non-trivial task.
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