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' Introduction

N =1string theory compactificafions

_ - String Theory In 10D: compactity on a 6D compact
. manifold

/] @

e Calabi-Yau




iyl b

Introduction

Flux compactifications in string theory

[Giddings-Kachru-Polchisnki, '01]  *




' Introduction

Flux compactifications in string theory

[Giddings-Kachru-Polchisnki, '01]

Infroduce internal fluxes: F,,

e Fluxes backreact warping internal
CY manifold: new avenues for
phenomenology and cosmology!

e Stabilise some of the moduli:
dilaton & complex structure

e Scale hierarchies & la Randall-
Sundrum generated

[Randall, Sundrum, ’99]
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| Type lIB flux compactifications

Consider type |IB string theory in 10D with localised
sources: D-branes & Orientifolds

1 OuTOMT G- G B (25)
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Gy = Fi3) — TH(3) 3-form potentials
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| Type lIB flux compactifications

Consider type |IB string theory in 10D with localised
sources: D-branes & Orientifolds
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82/%102 Im 7
T =Cl) +ie®  axio-dilaton K3 = (2m)7(a)Y/2 = £/4n

S
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Gy = Fi3) — TH(3) 3-form potentials
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Compactity the internal 6D in some CY manifold

ds%o = eZA(y)anat”da:” o ) G Gl 0l Uhs

- Fluxes’ backreaction = warp throats

Warped Throat

- Preserve N =1 supersymmetry in 4D

- RR&NSNS 3-form fluxes wrap internal
3-cycles and are quantised as

i

2ma

J;

2mo

| Fo €272,

| He € 2n2



Tadpole cancelation

e The orientifold compactifications relevant for us
contain O3/07-planes. Need to cancel tadpoles

¢ Fluxes contribute to the D3-brane charge as well
as D/-branes.

e Requiring to cancel total charges in the internal
CY space from D-branes, O-planes and fluxes:

e - MO8
Nz + Np3 = S B
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14D N =1 Supergravity
The effective 4D action takes the form

o /d4a:\/_[ PlR M3, K 5 8,00 0" + V(! )]

i & axio-dilaton
k%o 93 a
O = complex structure
K1y = (2m)"(o/)*/2 = £/4x {Ka‘hler modull
where the flux potential is given by
1 G(g 7 i
Vo 2/4;%0 cy y\/i 12 Im 7 4/4;%0 ImT Joy Gl



14D N =1 Supergravity

The potential can be written in N = 1 form

5 1
Qg

7 e [K“EDCLWDb—W = 3\W\2]

axio-dilaton
P = complex structure
Kdhler moduli

Q/\Q] — 2In[V]

with the Kahler potential

i nias e [—Z/C

¥

and the Gukov-Vafa-Witten flux superpotential

[Gukov-Vafa-Witten, '99]

W = Ga A S
CY
() = holomorphic (3,0)-form



1 No scale

models

e N no-scale models the superpotential is
Independent of the Kahler moduli, 7;

e This IS 1
(extra

fix Kah

he case of the flux GVW superpotential

&=l

non-perturbative contributions needed to
er moduli)
1 - Sont
e o oA [KabDaWDbW - 3\W\2}
2K709s
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' The periods of the CY

e The h*' complex structure moduli are described in
terms of the periods of

= {pialin)

(AA, Bg) symplectic basis for the b3 = OB E) 3-cycles, H;(CY)
(ar, 1) its dual basis, H3(CY), and Q = X1a; — F 18

e |[n terms of the periods

( 0 Lgxk )
il o)

W =GXII LS

Kes = —In (—i 11" $10) :
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The quintic and its mirror |

[Candelas-de la Ossa-Green-Parkes, '91]

We consider type IIB orientifold compactification on
the mirror of the quintic P*

® The quintic M3 Is given as the general quintic
hypersurface in P2

@ It has 101 complex structure moduli and 1 Kahler.
Thakis -k =3 b5 =101, 5 = =200
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The quintic and its mirror |l

[Candelas-de la Ossa-Green-Parkes, '91]

® The mirror quintic threefold w Is given as the
hypersurtface

P=>) z;—5¢]]zr =0
k

modded ouf by the z; symmetry: M;/Z3
and ¥ determines the complex structure of W

® It has k' =101, K21 =1, ¥y =200 and b3 =4
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Crifical points in the CS moduli space of w

The mirror quintic has three critical points: conifold, large
. complex structure and orbifold

® The conifold and LCS arise when P=0 and dP =0

= This restricts ¥° = 1 to a point, the conifold point.

= The point ¥° = oo, corresponds to the large complex |
structure point where the variety degenerates fo

T1LoX3tals =0

® The point ¥ = 0 in moduli space is an orbifold
singularity
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Critical points in the CS moduli space of

Parameterising the modulus ¥ by the coordinate z¢

o Tor— Sk

the singular points are located at:

® the conifold: z¢ =0

® the LCS: oo —l

® the orbifold: z¢c = o©

Yoo MUM
AY=1 CONFOL[P




- Monodromies

® Transport of the periods around the critical points
lead to specitfic monodromy franstormations:

(L = monodromy
transformation matrix

II — pll

® The monoromies around the singular points satisty

IRe EoRiaia gt =0 o
the LCS: [y r— e — 0 4 i
the orbifold: el

® The monodromies around the critical poinfs satisfty

—1
pe by po =1

T, e
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| Picard-Fuchs equations

The periods obey the differential Picard-Fuchs (PF)
equations, which in coordinates zy = (5v)° hear the
LCS point take the form

(6* — 2(0 4 a1)(0 + a2)(0 + a3)(8 + ax))II; = 0, BTG

e RS S 0 BEIRCT G~ Dk e

® To explore the solutions near the orpbiofold point,
convenient to make change of variables zo = 1/zum

(—20/5°0% + (a1 — 60)(az — 00)(az — 00)(as — 6o))IIY =0

® While near the conifold, convenient variables are
2= 1 =52,

(8¢ — (1 = z0)(a1 — 8¢)(az — Oc)(az — O¢)(ag — 6c))TT; = 0,

(the convergence radii are 5°°, 52, 1, respectively)

T e — ——



. Picard-Fuchs equations

To explore the full moduli space we also study the PF
equations in the vicinity of an arbitrary regular point on
the boundary of the conifold convergence region

(Hi el 62.Oé)(al — Oaftas = Usag=Oa)(as — ea))ﬂz'a =0

| G (Yo"
@ el
Orbifold
Im(z,)
MUM | { Conifold
Re(;) “‘\ a\ZM=0 “". F,).-"“‘:‘ z“‘:1/52 "’l i Re(ZM)

--------
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Power series solutions

Near the conifold the solutions are found by making a
power series Ansatz: Tl ; = 2&(co + €120 + €228 + - - - + ¢, 28):

® The solutions for z are z = 0, 1%, 2. We obtain three
power series solutions for x = 0,1,2 and a logarithmic
solution for x = 1. This vanishes when z¢ — 0

One obtains a set of recursive equations for the
coefficients to each order of the expansion.

® The case z =1 serves to construct the logarithmic
solution

{Ilce=zc(co+cr2c + e228 + -+ cnzg) Inzo + 28 (bo + bize + b2z + ...

® The convergence of the power series is lim b G ik
mn ©.@)
and similarly for b,

g T e St e — P e

e r— S [ — - e I | SR e . T i .



. Power series solutions

In the sympectic basis the periods near the conifold
fake form / R \
o 101¢76)
llg = (Jt]> bR g ol

\ 276 H4(ZC)

In a similar form, we find the periods 1I(z) In the

@

vicinity of all special points ¥ = 0,1, 00

We also determine the fransition matrices
to connect the convergence regions.

-INnd the periods in the full moduli space |
of W up to order 600. 1S oot

[Candelas et al. '91]

[Greene, Plesser "89]
[Huang, Klemm, Quackenbush '06] ]

e e | [ ——— R Sm—
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| Mirror quintic vacuo

® Flux compactification on the mirror quintfic: no-scale
model with a single complex structure z (and the
axio-dilaton 7) :

LA
2/4;%0 Js

K {K@bDaWDbW}

e TSR Dl G e e W =Gl

® To explore vacua, we want to map the full moduli
space of CY, the mirror quinfic: D,.W = D,W =0

® To map the full CY moduli space we solve the
periods as functions of the CS near all the critical
points as well as far from them

= fidees fAIQ>
(41,4, BL ) (a8 po e o

e Y e e R e S [ | W T e e S g I e 3 .



Symmetries of the potential |

The no-scale N/ =1 sugra potential

€K

P
Dnis

KD WD,W

® K and W are invariant under a shift of the axion Co

CO%CO—I_ba GB%GS (FS%FS‘l‘bHS) T:C(O)—l—ie_¢
G3:F3—TH3 :

broken spontaneously by the fluxes



Symmetries of the potential ||

® Under a shift of the CS phase, monodromy, by n
powers of ke ¥ oo

0 — 0+ 2mn,
K remains invariant, since utZuc =3 while

Hg%Hg—ﬂHl

and therefore
W — W — nG1H1

But shifting also the flux, Gs — Gs—nGi the
superpotential remains invariant
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. Hierarchies from fluxes revisited

In GKP only leading tferm in series of periods was kept.
Assuming further Fy, Hs, H, # 0, H3 > H, exponential
hierarchies were found solving for p.w =D, W =0

"~ 1 [Giddings-Kachru-Polchisnki, '01]
: eAm’m ~ Zé’/g e 6_27TH3/H4

DA

ds?o = eQA(y)ana:'“dx” + e g s dutady




"~ 1 [Giddings-Kachru-Polchisnki, '01]

Hierarchies from fluxes revisited

In GKP only leading tferm in series of periods was kept.
Assuming further Fy, Hs, H, # 0, H3 > H, exponential
hierarchies were found solving for p.w =D, W =0

eAmin &y Zé/g D 6—27TH3/H4

=2 AP

ke — eQA(y)ana:'“dx” +e G o dubdy

» We find an order one correction to original

GKP result, at leading order, due to Warped Throat
neglected termsin D,Ww =0 =
—2mHs/H4—0
<C ~ € s 9 0p ™ 0(1) [Blumenhagen et al. '16]

_fj » We find vacua with hierarchies keeping up to oder 600
~In the series and for more general flux configurations

N e i e — P S — I — e e Ty
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F,=80, H,=1
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F1=37, F2=11, F3=1, F4=3, H1=9, H2=2, H4=5.

60

H3

F1=37, F2=11 F4=3, H1=9, H2=2,H3=10, H4=5.

[

F1=37, F2=11 F3=1, F4=3, H1=9, H2=2, H4=5.

F1=37, F2=11 F4=3, H1=9, H2=2,H3=10, H4=5.




- Quintic vacuo

® Several stable Minkowski vacua at non-trivial
monodromy close to the conifold, r = |z| < 1
(C1|| haveg, <1 )I 0 —0+2mn, n>1

7 0 (31 to (F1,H1) | (Fe, Ha) (F3, H3) (ERs )
1 0.00387722 | -7.01112 | -2.965416 | 3.421883 (40,0) (0,0) (0,16) (0,1)
) 0.289795 -3.90606 | -7.0416876 | 7.0353577 | (80,0) (0,0) (0,8) (0,1)
3 0.289795 -3.90606 | -176.04219 | 175.88394 | (2000,0) (0,0) (0,8) (0,1)
4 0.289795 -3.90606 | -4.40105 4.3971 (50,0) (0,0) (0,8) (0,1)
5 0.476018 -21.5600 | -3.54466 5.02946 | (9*10,1) (0,0) (275100645 0,2)
6 0.26791 -2.65769 | -1.13736 2.11955 (20,0) (0,0) (0,8) (0,1)
7 0.0038772 -7.01111 | -4.44813 5.13282 (60,0) (0,0) (0,16) (0,1)
8 0.0553517 -1.88428 | -5.51566 20.8484 (200,1) (30,1) (2,10) (2.1
9 | 2.07602-107° | -13.6039 | -5.96259 6.84777 (80,0) (0,0) (0,30) (0,1)
10 0.160500 1.7234 0.407671 0.81259 (37,9) G Sl (1; 31 (355

14 0.000301 7.2269 -1.22438 44.711 (16,2) (Y (1,-8) (4,-1)
12 | 6.28576 - 10=° | —4.06 123.57 124.58 (36,2) | (107,0) (0,5) (0,1)
13 | 8.91875-10~" | —47.91 -4.75 1.56681 (2,0) (4,—2) Cles)) (1,0)
14 0.03351 6.28319 -3 3.71019 (3,-1) (3,0) ek 1) (0,0)

2 = re'? bty — Cnit 1

)

® Several “fake” Minkowski vacua appear: moduli
vevs depend on order of series.

— - 2 - =
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Prospects for large field inflation

® Due to the shift symmetry in the CS moduli they
have recently been used as potential inflatons in

string theory:

ﬂOfoQI inﬂOﬁOn & [Freese-Frieman-Linto, '90]

axion mOﬂOdrOmy [Silverstein et al. ‘08-'14]

[Kaloper, Sorbo. '09]

where the (discrete) shift symme’rry for the CS is

broken by fluxes

® Most works so far keep on
IN periods’ series expansio
complex structure point a

y leading order terms
N hear the large

Nd freeze most modul

except the (shift symmetric) inflaton

e iy e — [ — —— P



Inflation in the mirror quintic

® We look for inflationary trajectories first along the
shift symmetric directions, in the full 4D moduli

SpCICe CO) 0 (7_ 5 CO = ig;17 L 7467;9)
keeping up to order 600 in the series expansions

® We do this by looking for regions where at the
multifield slow roll conditions are saftisfied:

e <1 n <1
where:

, KIV,VV-V

KYV;V5V
e = Mp, 172 ; .

7

7 = min eigenvector

T e e
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Inflation in the mirror quintic

® We look for inflationary trajectories first along the
shift symmetric directions, in the full 4D moduli

space. Cy, 0 =Gty —=re iy
keeping up to order 600 in the series expansions

® We do this by looking for regions where at the
multifield slow roll conditions are satisfied:

F4=H2=—10, F1 =H1 =H3=H4=1 for r=O.8, t1=3.24, t2=10.32, 6=-0.45.
oOogp——————— T T 7 T T T T T T T 15

effect on expansion
order on €

...................

rrrrr
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Inflation in the mirror quintic

® In this case we did not find regions with small slow-
roll paramefters

® Scalar potential has generic form:

[Kobayashi,Oikawa,Otsuka,’15]

V(@) ~A+BO*+Clcosh+ ...

= osclillatory term generically too large

T Er, = = e A AR TR et = o

................................
................................
(=]
< £
= e
N <
< S
S £
£ N
N
L 1 1 L 1 1 1 1 L L L L 1 1 1 1 L 1 1 L L 1 1 L 1 1 1 L 1 1 1 [ [ L L L ol NS S N S N TR SN SN U S SRS S U NS S SN NN U S S S NS S S, |
Order 1 Order 200
— - - U i—— — PE—— [ —— S et ——
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Inflation in the mirror quintic
Explore scalar potential in all possible directions

& For configurations of fluxes with vacua near
the conifold |z] < 1, no regions with €,7 < 1

o |Inflationary regions exist for configurations of
fluxes with no Minkowski vacua.

One was found with a dS vacum

= — i e e —

R e oS Lo Sia DS SRIGTIC
SR T 7 e, when NP terms for Kahler
7y 0,0 10,2 0.1 : :
e e e s modull are iIncluded
43,10 193,64 | 198,-10 | -10,-10 : =
90.3 | 193,165 | -10,0 210,0 [Saltman, Silverstein,’04]
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Im(7)

Re(7)

Re(1)

Im(7)

Example of flux
configuration with smoll
slow-roll parameters:

I s =S T e
i — Sl o)

Eigenvector along 7
dominated by rdirection

~ (0.12,0.004,0.99, 0.09)
— (tl, tQ, T, 9)

e — L
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Inflation in the mirror quintic

@ Motivated by these results we explore slow-roll in
the orbifold convergence region r > r¢

e e s Bl S e, Sl = A T B =

t,=2.55, t;=1.01.

Im(7)

Im(7)

(again no minima)

......................

t;=1.01, 6=0.72

1 I L 1 ' i
500 1000 2000 2500 3000
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Ssummary

® We studied vacua of explicit type lIB orientifold flux
compactifications on the mirror quintic

® We mapped the whole moduli space of
the complex structure: near and away @
from the singular points ¢ =0, 1, o LCS

=1 CONFOLP

® We did this by solving the PF equations to higher
order in the series expansion (fill convergence is
achieved) around the singular and regular points
and the transition matrices



Summary: hierarchies

® Found an order one correction to GKP vacua

with hierarchies near the conifold point with and
without higher order ferms

® Vacua generically for non-trivial monodromies

® Apparent vacua at leading order vanish as higher |
order terms are included. |

IIIIII F.1=.40’.H3.=16.’ H'4=‘I1 - F1=20, H3=8, H4=1
o o © © ©° ©° ° 0.289795 _'l e o o : e o o o : e o o o : e o o o ;'
e © o ° | ]
L ]
] 0.289795 - -
1 0.289794 [ 5
0.90 . 0.289794 [ ]
] 0.289794 [ 5
0.85 ] _ !
] 0.289794 [ N
..................... ] L,
0 50 100 50 200 0 50 100 150 200
Ord

———— e —— e T it s R SRR e - el e



}

L
4

e T e e e e R el B o e T e e T i ] e T

Summary: inflation

® No inflationary regions along

3000 F

shift symmetric directions.
Inflation occurs along a linear
combination of all modul.

(TO, 03 TO)/%

® Osclillatory terms not small
enough to realise monomial slow-
roll inflation. But more general

2500
2000
1500 |
= 1000

500 F

0F

.................

inflation could be possible: bumpy inflation

[Parameswaran, Tasinato, 1Z, ‘16]

® Inflationary regions found for flux configurations with

Nno Minkowski minima.

® One example found with dS vacuum!

e e | [ ——— e I _ -, i



. Outlook

@ Kahler moduli stabilisation. LV not possible.

[a la Denef et al. '04]

® Multi-field natural inflation (large eftective
| decay constant increases with . They have
: R 50, we have ab!t = 101! ) [a la McAllister et al. "14-"15] |

® Beyond slow-roll inflation with sharp cliffs and
gentle plateaus in the potential: reduced field
ranges, " and Ving. Distinctive features: as

[Parameswaran, Tasinato, 1Z, '16]
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