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Introduction

I Our present project can be fitted into the general question
about classification of quantum field theories (QFTs) by treating
them as universal mathematical objects.

I We will concentrate on the d=4 unitary local QFTs with N = 2
superconformal symmetry, or N = 2 superconformal field theories
(SCFTs).
I Our main tool is the so called Seiberg-Witten (SW) data: the
collection of low-energy observables which can be exactly predicted
by N = 2 (Poincarè) supersymmetry and encoded in a geometrical
object, called the Coulomb branch (CB).
I The non-trivial dependence of SW data on N = 2 SCFT data
motivates us to attack the N = 2 classification problem by directly
considering the classification of SW geometries.
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RG, CFT, and SCFT and all that

I Conformal field theories (CFTs), invariant under space-time
conformal transformation by definition, are located at the fixed
points of RG flows on the theory space.

I The coupling constants in the vicinity of fixed points can be
classified as relevant, marginal relevant, exact marginal and
irrelevant by their scaling dimensions {∆i}, and a general local
QFT can be thought as a deformation of a UV CFT by relevant
couplings, and, if gapless, always flows to a IR CFT.
I So, due to the organizing role that CFTs play in Wilson’s RG
picture of QFTs, it is well motivated to pursue the classification of
CFTs.
I Conformal symmetry, joined with a certain number of
supersymmetries, can be enlarged to superconformal symmetry,
which gives further constraints on the structure of a CFT.
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N = 2 SCFT data

I For the purpose of systematically classifying N = 2 SCFTs, it is
desirable and favorable to intrinsically describe them in terms of
abstract N = 2 SCFT data.

I An incomplete list of pertinent SCFT data includes:

I the flavor symmetry algebra f;

I the dimensions, r, of the Coulomb branch (CB) MV , and the
dimension, h0, of the Higgs branch (HB) MH ;

I the scaling dimensions {∆(ui)} of CB operators;

I the conformal central charges a and c;

I the flavor central charge kf.

I Those listed observables turn out to be closely related to the
Seiberg-Witten data, and can be extracted from the latter. This
connection constitutes the key logical of our approach.
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Seiberg-Witten data

I N = 2 low energy effective action for the abelian vector
multiplets and gauge-neutral hypermultiplets is highly constrainted
by N = 2 supersymmetry.

I Various N = 2 selection rules lead to the existence of moduli
space of N = 2 vacua M and its (local) product structure

M =
⋃
i

Mi
V ×Mi

H ,
{Mi

V = Coulomb branch factor
Mi

H = Higgs branch factor
,

and imply the rigid special Kähler geometry on each Mi
V and

hyperkähler geometry on each Mi
H .

I These moduli spaces admit parametrization by the vevs of the
so-called Coulomb branch operators and Higgs branch operators in
the UV N = 2 SCFT. These vevs spontaneously break the
conformal symmetry and lead to the scaling structure of the
moduli spaces.
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Seiberg-Witten data

I The complex dimension of the largest CB factor—conventionally
denoted as MV —is called rank r (= maxi{dimCMi

V }).

I We will denote dimHMi
H = hdimCMi

V
.

I The conventional HB MH admits no CB factor; MH is a
hyperkähler cone;

I the branches with hdimCMi
V 6=0 6= 0 are collectively called

mixed branch;

I especially for hr 6= 0, CB is enlarged to the so-called enhanced
CB (ECB); the corresponding HB factor is called ECB fiber,
which is a hyperkähler vector space as f-module.

I We will be focusing our attention almost exclusively on the
(rank-1) CB geometry from now on. The reason is that it is not
lifted but is deformed by turning on N = 2 relevant operators in
the SCFT. This means that the scale invariant CB geometry and
its deformations encode detailed information (though in
non-obvious ways) about the structure of the SCFT data.
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Seiberg-Witten data

I We systematically study and classify the possible geometries of
rank-1 CBs with planar topology, i.e., CB ' C globally.
I Let u be the global complex coordinate, and {mi} are the
relevant deformation parameters of the SCFT.

{mi = 0}

I When {mi} = 0, the theory is conformal invariant, and has a
global internal symmetry u(2)R ⊕ f, where u(2)R is the N = 2
R-symmetry and f is the flavor symmetry algebra.
I On the CB,

I {u = 0} = conformal vacua.

I {u 6= 0} ⇒ scale invariance (SI) is spontaneously broken
(scaling dimension ∆(u) > 0).
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I We systematically study and classify the possible geometries of
rank-1 CBs with planar topology, i.e., CB ' C globally.
I Let u be the global complex coordinate, and {mi} are the
relevant deformation parameters of the SCFT.

{mi = 0}

deformation

{mi 6= 0}

I {mi} 6= 0 ⇒ flavor symmetry explicitly broken since ∆(mi) = 1
and mi ∈ adj(F ).
I CB is deformed.

I {u = 0} ⇒ {ui}: the tip of the cone is spitted to multiple
tips, where sit scale-invariant vacuum with flavor subalgebras.

I {u 6= ui} ⇒ Scale invariance is explicitly broken, and scaling
structure is lost.



Seiberg-Witten data

I The low-energy physics on the CB can be encoded in a
holomorphic family of elliptic curves, Σ(u,m), with a meromorphic
one-form, λ(u,m)

I Seiberg-Witten curves in Weierstrass form:

Σ(u,m) : y2 = x3 + f(u,m)x+ g(u,m),

which depends polynomially on complex parameters {u,mi}.
I The meromorphic 1-form λ(u,m) satisfies rigid special Kähler
(RSK) conditions constraining its u- and m-dependence,

∂uλ = κ
dx

y
+ dφ, Residues(λ) ∈ {ω(m) | ω ∈ ΛF }.

I The low energy u(1) gauge coupling and BPS central charges
can be determined from the curve and form.
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Seiberg-Witten data

I In scale-invariant case the curve degenerates as one of Kodaira’s
possibilities:

Name singular SW curve deg(Discx) ∆(u)

II∗ y2 = x3 + u5 10 6
III∗ y2 = x3 + u3x 9 4
IV ∗ y2 = x3 + u4 8 3

I∗0 y2 =
∏3
i=1 (x− ei(τ)u) 6 2

IV y2 = x3 + u2 4 3/2
III y2 = x3 + ux 3 4/3
II y2 = x3 + u 2 6/5

I∗n (n>0) y2 = x3 + ux2 + Λ−2nun+3 n+ 6 2
In (n>0) y2 = (x− 1)(x2 + Λ−nun) n 1

I Degree of the discriminant is an invariant under deformation.
I In/I∗n ⇔ IR-free u(1)/su(2) gauge theories with scale Λ.



I Mass deformations split SI singularity into multiple singularities
such that total degree of discriminant remains the same.
I There are different deformation patterns for each SI singularity.
I E.g., maximal deformation of II∗ singularity splits II∗ → {I110}
(ten I1 singulariities). It corresponds to CFT with f = E8:

mi = 0

II∗
deformation

mi 6= 0

I1

I1 I1 I1
I1

I1
I1 I1 I1

I1

I Discriminant has 10 distinct zeros:

Discx = u10 + · · · .



I Mass deformations split SI singularity into multiple singularities
such that total degree of discriminant remains the same.
I There are different deformation patterns for each SI singularity.
I E.g., sub-maximal deformation of II∗ singularity splits
II∗ → {I16, I4}. It corresponds to CFT with f = C5:

mi = 0

II∗
deformation

mi 6= 0

I1

I1
I1

I1
I1

I4
I1

I Discriminant has 7 distinct zeros:

Discx = (u6 + · · · )(u+ · · · )4.



Seiberg-Witten data

I An ansatz for one-form satisfying RSK condition given by
Minahan-Nemeschansky:

λ(u,m) =

[
2∆(u) a u+ 6b µ x+ 2W (Md)

+
∑
i

ri
∑

ωi orbit

yωi(u,m)

ωi(m)2 x− xωi(u,m)

]
dx

y
.

I a, b,W, ri, xωi are unknowns. Most difficult are xωi determined
by factorization of curve.
I Sum over Weyl orbits of flavor algebra weights ωi. Weyl group
is determined by curve.
I Which weights appear and their coefficients ri determine
together with Weyl group the flavor symmetry.
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Rank-1 SW geometries and N = 2 SCFT: classification

sing. deform. flavor symm. kf 12 · c 24 · a h1 h1 h0

II∗

{I101 } E8 12 62 95 — 0 29

{I61 , I4} C5 7 49 82 10 5 16

{I31 , I
∗
1 } A3 o Z2 14 42 75 4⊕ 4 4 9

{I21 , IV
∗
Q=1} A2 o Z2 14 38 71 3⊕ 3 3 ?

III∗

{I91} E7 8 38 59 — 0 17

{I51 , I4} C3 ⊕ A1 (5,8) 29 50 (6,1) 3 8

{I21 , I
∗
1 } A1 ⊕ (u(1) o Z2) (10, ?) 24 45 2+⊕ 2− 2 ?

{I1, IV ∗
Q=1} u(1) o Z2 ? 21 42 1+⊕ 1− 1 0

IV ∗

{I81} E6 6 26 41 – 0 11

{I41 , I4} C2 ⊕ u(1) (4, ?) 19 34 40 2 4
{I1, I∗1 } u(1) ? 15 30 1+⊕ 1− 1 0

I∗0
{I61} D4 4 14 23 — 0 5

{I21 , I4} A1 3 9 18 2 1 1

{I32} A1 3 9 18 2 1 1

IV {I41} A2 3 8 14 — 0 2

III {I31} A1 8/3 6 11 — 0 1

II {I21} ∅ — 22/5 43/5 — 0 0



Rank-1 SW geometries and N = 2 SCFT: classification

I The entries in unshaded rows are all known from other
techniques (e.g., as Lagrangian theories, by RG flows, by
S-dualities, from string contructions.)

I The entries in rows shaded blue are predictions for new N = 2
SCFTs that are supported by new evidence, including new class-S
construction, 4d N = 3 SCFTs, and matching RG flows.
I There are question marks where there is not enough information
from the CB geometry to usefully constrain an entry.

I Note that even the known h0, h1 and h1 are not obtained
directly from CB geometry. The knowledge about them
depend on other independent constructions mentioned above;

I There is no available ways in determining u(1) flavor central
charge ku(1).
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Further results on conformal and flavor central charges

I Central charges a, c, kf (with f non-Abelian) can be determined
in various ways, including S-duality argument, holographic
methods, 2d Chiral algebra, etc..

I We will discuss and generalize an approach given by Shapere
and Tachikawa which is directly related to the low energy data
computed from the topologically twisted CB partition function:

Z =

∫
[dV ][dH] Aχ Bσ ∏

iC
ni
i eSlR[V,H]

I We consider the rank-1 case, while this method is applicable to
a very large class of theories with arbitrary rank; one can get

24a = 5 + h1 + 12∆(A) + 8∆(B)

12c = 2 + h1 + 8∆(B)

ki = Ti(2h1)− 2∆(Ci)
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I We consider the rank-1 case, while this method is applicable to
a very large class of theories with arbitrary rank; one can get

24a = 5 + h1 + 12∆(A) + 8∆(B)

12c = 2 + h1 + 8∆(B)

ki = Ti(2h1)− 2∆(Ci)



Further results on conformal and flavor central charges

I For considering generic deformations (Z counts the number of
distinct zeros of discriminant of the curve):
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I In turn the conformal central charge a and c can be determined:
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Further results on conformal and flavor central charges

I For considering special deformations f→ ⊕ifi (di is the Dynkin
index of embedding fi ↪→ f):

∆(C) =
∑
i
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1)− ki),

for all i such that fi is nonabelian.

I In turn the flavor central charge k can be determined:
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Summary and open questions

I Classification of 4d rank-1 N=2 SCFTs admit planar CB has
been performed

I A minimal set of N=2 SCFT data has been computed exactly

I Further discussion on the u(1) flavor central charge ku(1)?

I Similar story of 4d rank-1 N = 2 SCFTs with non-planar CB?

I Generalization to higher rank SCFTs?

I Possible d=5 N=1/d=6 N=(1,0) versions?
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