On the classification of rank-1 four-dimensional $\mathcal{N}=2$ SCFTs by Seiberg-Witten geometry

Yongchao Lü

July 28, 2016 University of Cincinnati Based on work with **Philip Argyres, Matteo Lotito, Mario Martone** arXiv:1505.04814 arXiv:1511.00669 arXiv:1601.00011 arXiv:1602.02764 and to appear

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Introduction

▶ RG, CFT, and SCFT and all that

Introduction

RG, CFT, and SCFT and all that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ $\mathcal{N} = 2$ SCFT data

Introduction

RG, CFT, and SCFT and all that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ $\mathcal{N} = 2$ SCFT data
- Seiberg-Witten data

Introduction

- RG, CFT, and SCFT and all that
- $\mathcal{N} = 2$ SCFT data
- Seiberg-Witten data
- ▶ Rank-1 SW geometries and N = 2 SCFT: classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

- RG, CFT, and SCFT and all that
- $\mathcal{N} = 2$ SCFT data
- Seiberg-Witten data
- ▶ Rank-1 SW geometries and N = 2 SCFT: classification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conformal and flavor central charges

Introduction

- RG, CFT, and SCFT and all that
- $\mathcal{N} = 2$ SCFT data
- Seiberg-Witten data
- ▶ Rank-1 SW geometries and N = 2 SCFT: classification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Conformal and flavor central charges
- Summary and open questions

► Our present project can be fitted into the general question about *classification of quantum field theories (QFTs)* by treating them as universal mathematical objects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Our present project can be fitted into the general question about *classification of quantum field theories (QFTs)* by treating them as universal mathematical objects.

▶ We will concentrate on the d=4 unitary local QFTs with $\mathcal{N} = 2$ superconformal symmetry, or $\mathcal{N} = 2$ superconformal field theories (SCFTs).

► Our present project can be fitted into the general question about *classification of quantum field theories (QFTs)* by treating them as universal mathematical objects.

▶ We will concentrate on the d=4 unitary local QFTs with $\mathcal{N} = 2$ superconformal symmetry, or $\mathcal{N} = 2$ superconformal field theories (SCFTs).

▶ Our main tool is the so called Seiberg-Witten (SW) data: the collection of low-energy observables which can be exactly predicted by $\mathcal{N} = 2$ (Poincarè) supersymmetry and encoded in a geometrical object, called the Coulomb branch (CB).

► Our present project can be fitted into the general question about *classification of quantum field theories (QFTs)* by treating them as universal mathematical objects.

▶ We will concentrate on the d=4 unitary local QFTs with $\mathcal{N} = 2$ superconformal symmetry, or $\mathcal{N} = 2$ superconformal field theories (SCFTs).

▶ Our main tool is the so called Seiberg-Witten (SW) data: the collection of low-energy observables which can be exactly predicted by $\mathcal{N} = 2$ (Poincarè) supersymmetry and encoded in a geometrical object, called the Coulomb branch (CB).

▶ The non-trivial dependence of SW data on $\mathcal{N} = 2$ SCFT data motivates us to attack the $\mathcal{N} = 2$ classification problem by directly considering the classification of SW geometries.

RG, CFT, and SCFT and all that

► Conformal field theories (CFTs), invariant under space-time conformal transformation by definition, are located at the **fixed points of RG flows** on the theory space.

RG, CFT, and SCFT and all that

► Conformal field theories (CFTs), invariant under space-time conformal transformation by definition, are located at the **fixed points of RG flows** on the theory space.

► The coupling constants in the vicinity of fixed points can be classified as **relevant**, **marginal relevant**, **exact marginal and irrelevant** by their scaling dimensions $\{\Delta_i\}$, and a general local QFT can be thought as a *deformation* of a UV CFT by relevant couplings, and, if gapless, always flows to a IR CFT.

RG, CFT, and SCFT and all that

► Conformal field theories (CFTs), invariant under space-time conformal transformation by definition, are located at the **fixed points of RG flows** on the theory space.

▶ The coupling constants in the vicinity of fixed points can be classified as **relevant**, **marginal relevant**, **exact marginal and irrelevant** by their scaling dimensions $\{\Delta_i\}$, and a general local QFT can be thought as a *deformation* of a UV CFT by relevant couplings, and, if gapless, always flows to a IR CFT.

► So, due to the organizing role that CFTs play in Wilson's RG picture of QFTs, it is well motivated to pursue the classification of CFTs.

► Conformal symmetry, joined with a certain number of supersymmetries, can be enlarged to superconformal symmetry, which gives further constraints on the structure of a CFT.

$\mathcal{N}=2~\text{SCFT}$ data

▶ For the purpose of systematically classifying $\mathcal{N} = 2$ SCFTs, it is desirable and favorable to intrinsically describe them in terms of abstract $\mathcal{N} = 2$ SCFT data.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\mathcal{N}=2~\text{SCFT}$ data

▶ For the purpose of systematically classifying $\mathcal{N} = 2$ SCFTs, it is desirable and favorable to intrinsically describe them in terms of abstract $\mathcal{N} = 2$ SCFT data.

- ► An incomplete list of pertinent SCFT data includes:
 - the flavor symmetry algebra f;
 - ▶ the dimensions, r, of the Coulomb branch (CB) M_V, and the dimension, h₀, of the Higgs branch (HB) M_H;

- the scaling dimensions $\{\Delta(u_i)\}$ of CB operators;
- the conformal central charges a and c;
- ▶ the flavor central charge k_f.

$\mathcal{N}=2~\text{SCFT}$ data

▶ For the purpose of systematically classifying $\mathcal{N} = 2$ SCFTs, it is desirable and favorable to intrinsically describe them in terms of abstract $\mathcal{N} = 2$ SCFT data.

► An incomplete list of pertinent SCFT data includes:

- the flavor symmetry algebra f;
- ▶ the dimensions, r, of the Coulomb branch (CB) M_V, and the dimension, h₀, of the Higgs branch (HB) M_H;
- ► the scaling dimensions {∆(u_i)} of CB operators;
- the conformal central charges a and c;
- the flavor central charge k_f.

► Those listed observables turn out to be closely related to the Seiberg-Witten data, and can be extracted from the latter. This connection constitutes the key logical of our approach.

▶ $\mathcal{N} = 2$ low energy effective action for the abelian vector multiplets and gauge-neutral hypermultiplets is highly constrainted by $\mathcal{N} = 2$ supersymmetry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ $\mathcal{N} = 2$ low energy effective action for the abelian vector multiplets and gauge-neutral hypermultiplets is highly constrainted by $\mathcal{N} = 2$ supersymmetry.

► Various $\mathcal{N} = 2$ selection rules lead to the existence of moduli space of $\mathcal{N} = 2$ vacua \mathcal{M} and its (local) product structure

$$\mathcal{M} = \bigcup_{i} \mathcal{M}_{V}^{i} \times \mathcal{M}_{H}^{i}, \qquad \begin{cases} \mathcal{M}_{V}^{i} = \text{Coulomb branch factor} \\ \mathcal{M}_{H}^{i} = \text{Higgs branch factor} \end{cases},$$

and imply the rigid special Kähler geometry on each \mathcal{M}_V^i and hyperkähler geometry on each \mathcal{M}_H^i .

▶ $\mathcal{N} = 2$ low energy effective action for the abelian vector multiplets and gauge-neutral hypermultiplets is highly constrainted by $\mathcal{N} = 2$ supersymmetry.

► Various $\mathcal{N} = 2$ selection rules lead to the existence of moduli space of $\mathcal{N} = 2$ vacua \mathcal{M} and its (local) product structure

$$\mathcal{M} = igcup_i \mathcal{M}_V^i imes \mathcal{M}_H^i, \qquad iggl\{ egin{array}{c} \mathcal{M}_V^i = {
m Coulomb \ branch \ factor} \ \mathcal{M}_H^i = {
m Higgs \ branch \ factor} \ \end{cases},$$

and imply the rigid special Kähler geometry on each \mathcal{M}_V^i and hyperkähler geometry on each \mathcal{M}_H^i .

▶ These moduli spaces admit parametrization by the vevs of the so-called Coulomb branch operators and Higgs branch operators in the UV $\mathcal{N} = 2$ SCFT. These vevs spontaneously break the conformal symmetry and lead to the scaling structure of the moduli spaces.

▶ The complex dimension of the largest CB factor—conventionally denoted as \mathcal{M}_V —is called rank $r \ (= \max_i \{\dim_{\mathbb{C}} \mathcal{M}_V^i\})$.

▶ The complex dimension of the largest CB factor—conventionally denoted as \mathcal{M}_V —is called rank $r \ (= \max_i \{ \dim_{\mathbb{C}} \mathcal{M}_V^i \})$.

- We will denote $\dim_{\mathbb{H}} \mathcal{M}_{H}^{i} = h_{\dim_{\mathbb{C}} \mathcal{M}_{V}^{i}}$.
 - ► The conventional HB M_H admits no CB factor; M_H is a hyperkähler cone;
 - ► the branches with h_{dim_C}Mⁱ_V≠0 ≠ 0 are collectively called mixed branch;
 - especially for $h_r \neq 0$, CB is enlarged to the so-called *enhanced* CB (ECB); the corresponding HB factor is called ECB fiber, which is a hyperkähler vector space as f-module.

▶ The complex dimension of the largest CB factor—conventionally denoted as \mathcal{M}_V —is called rank $r \ (= \max_i \{ \dim_{\mathbb{C}} \mathcal{M}_V^i \})$.

- We will denote $\dim_{\mathbb{H}} \mathcal{M}_{H}^{i} = h_{\dim_{\mathbb{C}} \mathcal{M}_{V}^{i}}$.
 - ► The conventional HB M_H admits no CB factor; M_H is a hyperkähler cone;
 - ► the branches with h_{dim_C}Mⁱ_V≠0 ≠ 0 are collectively called mixed branch;
 - especially for $h_r \neq 0$, CB is enlarged to the so-called *enhanced* CB (ECB); the corresponding HB factor is called ECB fiber, which is a hyperkähler vector space as f-module.

▶ We will be focusing our attention almost exclusively on the (rank-1) CB geometry from now on. The reason is that it is not lifted but is deformed by turning on $\mathcal{N} = 2$ relevant operators in the SCFT. This means that the scale invariant CB geometry and its deformations encode detailed information (though in non-obvious ways) about the structure of the SCFT data.

▶ We systematically study and classify the possible geometries of rank-1 CBs with planar topology, i.e., CB $\simeq \mathbb{C}$ globally. ▶ Let u be the global complex coordinate, and $\{m_i\}$ are the relevant deformation parameters of the SCFT.

▶ When $\{m_i\} = 0$, the theory is conformal invariant, and has a global internal symmetry $\mathfrak{u}(2)_R \oplus \mathfrak{f}$, where $\mathfrak{u}(2)_R$ is the $\mathcal{N} = 2$ R-symmetry and \mathfrak{f} is the flavor symmetry algebra.

 \blacktriangleright On the CB,

• $\{u = 0\} =$ conformal vacua.

► $\{u \neq 0\}$ ⇒ scale invariance (SI) is spontaneously broken (scaling dimension $\Delta(u) > 0$).

▶ We systematically study and classify the possible geometries of rank-1 CBs with planar topology, i.e., CB ≃ C globally.
 ▶ Let u be the global complex coordinate, and {m_i} are the

relevant deformation parameters of the SCFT.

▶ $\{m_i\} \neq 0 \Rightarrow$ flavor symmetry explicitly broken since $\Delta(m_i) = 1$ and $m_i \in \operatorname{adj}(F)$.

- CB is deformed.
 - ► {u = 0} ⇒ {u_i}: the tip of the cone is spitted to multiple tips, where sit scale-invariant vacuum with flavor subalgebras.
 - {u ≠ u_i} ⇒ Scale invariance is explicitly broken, and scaling structure is lost.

► The low-energy physics on the CB can be encoded in a holomorphic family of elliptic curves, $\Sigma(u, \mathbf{m})$, with a meromorphic one-form, $\lambda(u, \mathbf{m})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The low-energy physics on the CB can be encoded in a holomorphic family of elliptic curves, $\Sigma(u, \mathbf{m})$, with a meromorphic one-form, $\lambda(u, \mathbf{m})$

► Seiberg-Witten curves in Weierstrass form:

$$\Sigma(u, \mathbf{m}): \qquad y^2 = x^3 + f(u, \mathbf{m}) x + g(u, \mathbf{m}),$$

which depends polynomially on complex parameters $\{u, m_i\}$.

► The low-energy physics on the CB can be encoded in a holomorphic family of elliptic curves, $\Sigma(u, \mathbf{m})$, with a meromorphic one-form, $\lambda(u, \mathbf{m})$

► Seiberg-Witten curves in Weierstrass form:

$$\Sigma(u, \mathbf{m}): \qquad y^2 = x^3 + f(u, \mathbf{m}) x + g(u, \mathbf{m}),$$

which depends polynomially on complex parameters $\{u, m_i\}$. \blacktriangleright The meromorphic 1-form $\lambda(u, \mathbf{m})$ satisfies rigid special Kähler (RSK) conditions constraining its *u*- and **m**-dependence,

$$\partial_u \lambda = \kappa \frac{\mathrm{d}x}{y} + \mathrm{d}\phi, \qquad \mathsf{Residues}(\lambda) \in \{ \boldsymbol{\omega}(\mathbf{m}) \mid \boldsymbol{\omega} \in \Lambda_F \}.$$

► The low-energy physics on the CB can be encoded in a holomorphic family of elliptic curves, $\Sigma(u, \mathbf{m})$, with a meromorphic one-form, $\lambda(u, \mathbf{m})$

► Seiberg-Witten curves in Weierstrass form:

$$\Sigma(u, \mathbf{m}): \qquad y^2 = x^3 + f(u, \mathbf{m}) x + g(u, \mathbf{m}),$$

which depends polynomially on complex parameters $\{u, m_i\}$. The meromorphic 1-form $\lambda(u, \mathbf{m})$ satisfies rigid special Kähler (RSK) conditions constraining its *u*- and **m**-dependence,

$$\partial_u \lambda = \kappa \frac{\mathrm{d}x}{y} + \mathrm{d}\phi, \qquad \mathsf{Residues}(\lambda) \in \{ \boldsymbol{\omega}(\mathbf{m}) \mid \boldsymbol{\omega} \in \Lambda_F \}.$$

▶ The low energy u(1) gauge coupling and BPS central charges can be determined from the curve and form.

► In scale-invariant case the curve degenerates as one of Kodaira's possibilities:

Name	singular SW curve	$deg(Disc_x)$	$\Delta(u)$
II^*	$y^2 = x^3 + u^5$	10	6
III^*	$y^2 = x^3 + u^3 x$	9	4
IV^*	$y^2 = x^3 + u^4$	8	3
I_0^*	$y^2 = \prod_{i=1}^3 (x - e_i(\tau) u)$	6	2
IV	$y^2 = x^3 + u^2$	4	3/2
III	$y^2 = x^3 + ux$	3	4/3
II	$y^2 = x^3 + u$	2	6/5
$I_n^* \ (n > 0)$	$y^2 = x^3 + ux^2 + \Lambda^{-2n}u^{n+3}$	n+6	2
I_n (n>0)	$y^2 = (x-1)(x^2 + \Lambda^{-n}u^n)$	n	1

▶ Degree of the discriminant is an invariant under deformation. ▶ $I_n/I_n^* \Leftrightarrow \text{IR-free } \mathfrak{u}(1)/\mathfrak{su}(2)$ gauge theories with scale Λ . ► Mass deformations split SI singularity into multiple singularities such that total degree of discriminant remains the same.

▶ There are different deformation patterns for each SI singularity.

► E.g., maximal deformation of II^* singularity splits $II^* \rightarrow \{I_1^{10}\}$ (ten I_1 singularities). It corresponds to CFT with $\mathfrak{f} = \underline{E_8}$:

Discriminant has 10 distinct zeros:

$$\mathsf{Disc}_x = u^{10} + \cdots$$

► Mass deformations split SI singularity into multiple singularities such that total degree of discriminant remains the same.

▶ There are different deformation patterns for each SI singularity.

► E.g., sub-maximal deformation of II* singularity splits

 $II^* \rightarrow \{I_1{}^6, I_4\}$. It corresponds to CFT with $\mathfrak{f} = C_5$:

Discriminant has 7 distinct zeros:

$$\mathsf{Disc}_x = (u^6 + \cdots)(u + \cdots)^4.$$

► An ansatz for one-form satisfying RSK condition given by Minahan-Nemeschansky:

$$\begin{split} \lambda(u,\mathbf{m}) &= \left[2\Delta(u) \, a \, u + 6b \, \mu \, x + 2W(M_d) \right. \\ &+ \sum_i r_i \sum_{\omega_i \text{ orbit}} \frac{y_{\omega_i}(u,\mathbf{m})}{\omega_i(\mathbf{m})^2 \, x - x_{\omega_i}(u,\mathbf{m})} \right] \frac{dx}{y}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► An ansatz for one-form satisfying RSK condition given by Minahan-Nemeschansky:

$$\begin{split} \lambda(u,\mathbf{m}) &= \left[2\Delta(u) \, \mathbf{a} \, u + 6 \mathbf{b} \, \mu \, x + 2 W(M_d) \right. \\ &+ \sum_i r_i \sum_{\omega_i \text{ orbit}} \frac{y_{\omega_i}(u,\mathbf{m})}{\omega_i(\mathbf{m})^2 \, x - x_{\omega_i}(u,\mathbf{m})} \right] \frac{dx}{y} \end{split}$$

► $a, b, W, r_i, x_{\omega_i}$ are unknowns. Most difficult are x_{ω_i} determined by factorization of curve.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► An ansatz for one-form satisfying RSK condition given by Minahan-Nemeschansky:

$$\begin{split} \lambda(u,\mathbf{m}) &= \Bigg[2\Delta(u) \, \mathbf{a} \, u + 6 \mathbf{b} \, \mu \, x + 2 W(M_d) \\ &+ \sum_i r_i \sum_{\omega_i \text{ orbit}} \frac{y_{\omega_i}(u,\mathbf{m})}{\omega_i(\mathbf{m})^2 \, x - x_{\omega_i}(u,\mathbf{m})} \Bigg] \frac{dx}{y} \end{split}$$

► $a, b, W, r_i, x_{\omega_i}$ are unknowns. Most difficult are x_{ω_i} determined by factorization of curve.

▶ Sum over Weyl orbits of flavor algebra weights ω_i . Weyl group is determined by curve.

► An ansatz for one-form satisfying RSK condition given by Minahan-Nemeschansky:

$$\begin{split} \lambda(u,\mathbf{m}) &= \Bigg[2\Delta(u) \, \mathbf{a} \, u + 6 \mathbf{b} \, \mu \, x + 2 W(M_d) \\ &+ \sum_i r_i \sum_{\omega_i \text{ orbit}} \frac{y_{\omega_i}(u,\mathbf{m})}{\omega_i(\mathbf{m})^2 \, x - x_{\omega_i}(u,\mathbf{m})} \Bigg] \frac{dx}{y} \end{split}$$

► $a, b, W, r_i, x_{\omega_i}$ are unknowns. Most difficult are x_{ω_i} determined by factorization of curve.

▶ Sum over Weyl orbits of flavor algebra weights ω_i . Weyl group is determined by curve.

▶ Which weights appear and their coefficients r_i determine together with Weyl group the flavor symmetry.

sing.	deform.	flavor symm.	k_{f}	$12 \cdot c$	$24 \cdot a$	h_1	h_1	h_0
	$\{I_1^{10}\}$	E_8	12	62	95	_	0	29
	$\{I_1^6, I_4\}$	C_5	7	49	82	10	5	16
II^*	$\{I_1^3, I_1^*\}$	$A_3 \rtimes \mathbb{Z}_2$	14	42	75	${\bf 4}\oplus \overline{\bf 4}$	4	9
	$\{I_1^2, IV_{Q=1}^*\}$	$A_2 \rtimes \mathbb{Z}_2$	14	38	71	${f 3}\oplus\overline{f 3}$	3	?
	$\{I_1^9\}$	E_7	8	38	59	-	0	17
	$\{I_1^5, I_4\}$	$C_3 \oplus A_1$	(5,8)	29	50	(6,1)	3	8
III*	$\{I_1^2, I_1^*\}$	$A_1 \oplus (\mathfrak{u}(1) \rtimes \mathbb{Z}_2)$	(10, ?)	24	45	$2_+ \oplus 2$	2	?
	$\{I_1, IV_{Q=1}^*\}$	$u(1) \rtimes \mathbb{Z}_2$?	21	42	$1_+ \oplus 1$	1	0
	$\{I_1^8\}$	E_6	6	26	41	-	0	11
	$\{I_1^4, I_4\}$	$C_2 \oplus \mathrm{u}(1)$	(4, ?)	19	34	4_0	2	4
IV^*	$\{I_1, I_1^*\}$	u(1)	?	15	30	$1_{+} \oplus 1_{-}$	1	0
1*	$\{I_1^6\}$	D_4	4	14	23	—	0	5
10	$\{I_1^2, I_4\}$	A_1	3	9	18	2	1	1
	$\{I_2^3\}$	A_1	3	9	18	2	1	1
IV	$\{I_1^4\}$	A_2	3	8	14		0	2
III	$\{I_1^3\}$	A_1	8/3	6	11		0	1
II	$\{I_1^2\}$	Ø	_	22/5	43/5		0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The entries in unshaded rows are all known from other techniques (e.g., as Lagrangian theories, by RG flows, by S-dualities, from string contructions.)

► The entries in unshaded rows are all known from other techniques (e.g., as Lagrangian theories, by RG flows, by S-dualities, from string contructions.)

▶ The entries in rows shaded blue are predictions for new $\mathcal{N} = 2$ SCFTs that are supported by new evidence, including new class-S construction, 4d $\mathcal{N} = 3$ SCFTs, and matching RG flows.

► The entries in unshaded rows are all known from other techniques (e.g., as Lagrangian theories, by RG flows, by S-dualities, from string contructions.)

▶ The entries in rows shaded blue are predictions for new $\mathcal{N} = 2$ SCFTs that are supported by new evidence, including new class-S construction, 4d $\mathcal{N} = 3$ SCFTs, and matching RG flows.

► There are question marks where there is not enough information from the CB geometry to usefully constrain an entry.

- Note that even the known h₀, h₁ and h₁ are not obtained directly from CB geometry. The knowledge about them depend on other independent constructions mentioned above;
- ► There is no available ways in determining u(1) flavor central charge k_{u(1)}.

► Central charges a, c, k_{f} (with f non-Abelian) can be determined in various ways, including S-duality argument, holographic methods, 2d Chiral algebra, etc..

► Central charges a, c, k_{f} (with f non-Abelian) can be determined in various ways, including S-duality argument, holographic methods, 2d Chiral algebra, etc..

► We will discuss and generalize an approach given by Shapere and Tachikawa which is directly related to the low energy data computed from the topologically twisted CB partition function:

$$Z = \int [dV] [dH] \ A^{\chi} \ B^{\sigma} \ \prod_i C_i^{n_i} \ e^{S_{\rm IR}[V,H]}$$

► Central charges a, c, k_{f} (with f non-Abelian) can be determined in various ways, including S-duality argument, holographic methods, 2d Chiral algebra, etc..

► We will discuss and generalize an approach given by Shapere and Tachikawa which is directly related to the low energy data computed from the topologically twisted CB partition function:

$$Z = \int [dV] [dH] \ A^{\chi} \ B^{\sigma} \ \prod_i C_i^{n_i} \ e^{S_{\mathsf{IR}}[V,H]}$$

► We consider the rank-1 case, while this method is applicable to a very large class of theories with arbitrary rank; one can get

$$24a = 5 + h_1 + 12\Delta(A) + 8\Delta(B)$$

$$12c = 2 + h_1 + 8\Delta(B)$$

$$k_i = T_i(2\mathbf{h_1}) - 2\Delta(C_i)$$

► For considering generic deformations (*Z* counts the number of distinct zeros of discriminant of the curve):

$$\Delta(A) = \frac{\Delta - 1}{2}$$
$$\Delta(B) = \frac{\Delta}{8} \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i}$$

► For considering generic deformations (*Z* counts the number of distinct zeros of discriminant of the curve):

$$\Delta(A) = \frac{\Delta - 1}{2}$$

$$\Delta(B) = \frac{\Delta}{8} \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i}$$

 \blacktriangleright In turn the conformal central charge a and c can be determined:

$$24a = 5 + h_1 + 3\frac{\Delta - 1}{2} + \Delta \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i},$$
$$12c = 2 + h_1 + \Delta \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► For considering special deformations $\mathfrak{f} \to \bigoplus_i \mathfrak{f}_i$ (d_i is the Dynkin index of embedding $\mathfrak{f}_i \hookrightarrow \mathfrak{f}$):

$$\Delta(C) = \sum_{i} \frac{\Delta}{\Delta_{i} d_{i}} (T(2\mathbf{h_{1}^{i}}) - k_{i}),$$

for all i such that f_i is nonabelian.

▶ For considering special deformations $\mathfrak{f} \to \bigoplus_i \mathfrak{f}_i$ (d_i is the Dynkin index of embedding $\mathfrak{f}_i \hookrightarrow \mathfrak{f}$):

$$\Delta(C) = \sum_{i} \frac{\Delta}{\Delta_{i} d_{i}} (T(2\mathbf{h}_{1}^{\mathbf{i}}) - k_{i}),$$

for all i such that f_i is nonabelian.

▶ In turn the flavor central charge k can be determined:

$$k = \sum_{i} \frac{\Delta}{\Delta_{i} d_{i}} (k_{i} - T(2\mathbf{h_{1}^{i}})) + T_{i}(2\mathbf{h_{1}}).$$

▶ For considering special deformations $\mathfrak{f} \to \bigoplus_i \mathfrak{f}_i$ (d_i is the Dynkin index of embedding $\mathfrak{f}_i \hookrightarrow \mathfrak{f}$):

$$\Delta(C) = \sum_{i} \frac{\Delta}{\Delta_{i} d_{i}} (T(2\mathbf{h}_{1}^{\mathbf{i}}) - k_{i}),$$

for all i such that f_i is nonabelian.

▶ In turn the flavor central charge k can be determined:

$$k = \sum_{i} \frac{\Delta}{\Delta_{i} d_{i}} (k_{i} - T(2\mathbf{h_{1}^{i}})) + T_{i}(2\mathbf{h_{1}}).$$

Summary and open questions

 \blacktriangleright Classification of 4d rank-1 N=2 SCFTs admit planar CB has been performed

 \blacktriangleright A minimal set of N=2 SCFT data has been computed exactly

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary and open questions

- \blacktriangleright Classification of 4d rank-1 N=2 SCFTs admit planar CB has been performed
- ▶ A minimal set of N=2 SCFT data has been computed exactly
- ▶ Further discussion on the u(1) flavor central charge $k_{u(1)}$?
- Similar story of 4d rank-1 $\mathcal{N} = 2$ SCFTs with non-planar CB?

- Generalization to higher rank SCFTs?
- ▶ Possible d=5 N=1/d=6 N=(1,0) versions?