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Introduction

» Our present project can be fitted into the general question
about classification of quantum field theories (QFTs) by treating
them as universal mathematical objects.

» We will concentrate on the d=4 unitary local QFTs with V' =2
superconformal symmetry, or A = 2 superconformal field theories
(SCFTs).

» Our main tool is the so called Seiberg-Witten (SW) data: the
collection of low-energy observables which can be exactly predicted
by ANV = 2 (Poincare) supersymmetry and encoded in a geometrical
object, called the Coulomb branch (CB).

» The non-trivial dependence of SW data on A/ = 2 SCFT data
motivates us to attack the A/ = 2 classification problem by directly
considering the classification of SW geometries.
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RG, CFT, and SCFT and all that

» Conformal field theories (CFTs), invariant under space-time
conformal transformation by definition, are located at the fixed
points of RG flows on the theory space.

» The coupling constants in the vicinity of fixed points can be
classified as relevant, marginal relevant, exact marginal and
irrelevant by their scaling dimensions {A;}, and a general local
QFT can be thought as a deformation of a UV CFT by relevant
couplings, and, if gapless, always flows to a IR CFT.

» So, due to the organizing role that CFTs play in Wilson's RG
picture of QFTs, it is well motivated to pursue the classification of
CFTs.

» Conformal symmetry, joined with a certain number of
supersymmetries, can be enlarged to superconformal symmetry,
which gives further constraints on the structure of a CFT.
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» For the purpose of systematically classifying N' = 2 SCFTs, it is
desirable and favorable to intrinsically describe them in terms of
abstract A/ = 2 SCFT data.
» An incomplete list of pertinent SCFT data includes:

> the flavor symmetry algebra f;
the dimensions, r, of the Coulomb branch (CB) My, and the
dimension, hg, of the Higgs branch (HB) M;

the scaling dimensions {A(u;)} of CB operators;
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the conformal central charges a and ¢;

v

the flavor central charge ;.

» Those listed observables turn out to be closely related to the
Seiberg-Witten data, and can be extracted from the latter. This
connection constitutes the key logical of our approach.
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Seiberg-Witten data

» N =2 low energy effective action for the abelian vector
multiplets and gauge-neutral hypermultiplets is highly constrainted
by NV = 2 supersymmetry.

» Various N/ = 2 selection rules lead to the existence of moduli
space of N = 2 vacua M and its (local) product structure

)

i i M:?, = Coulomb branch factor
M= L;JMV X M, { ‘é = Higgs branch factor
and imply the rigid special Kahler geometry on each Mﬁ/ and
hyperkdhler geometry on each M.

» These moduli spaces admit parametrization by the vevs of the
so-called Coulomb branch operators and Higgs branch operators in
the UV NV = 2 SCFT. These vevs spontaneously break the
conformal symmetry and lead to the scaling structure of the
moduli spaces.
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» The complex dimension of the largest CB factor—conventionally
denoted as My —is called rank r (= max;{dimc M}, }).
> We will denote dimy My = hgime i, -
» The conventional HB Mg admits no CB factor; My is a
hyperkahler cone;

» the branches with hdimCM§/¢0 # 0 are collectively called
mixed branch;

» especially for A, # 0, CB is enlarged to the so-called enhanced
CB (ECB); the corresponding HB factor is called ECB fiber,
which is a hyperkahler vector space as f-module.

» We will be focusing our attention almost exclusively on the
(rank-1) CB geometry from now on. The reason is that it is not
lifted but is deformed by turning on N = 2 relevant operators in
the SCFT. This means that the scale invariant CB geometry and
its deformations encode detailed information (though in
non-obvious ways) about the structure of the SCFT data.
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» We systematically study and classify the possible geometries of
rank-1 CBs with planar topology, i.e., CB ~ C globally.

» Let u be the global complex coordinate, and {m;} are the
relevant deformation parameters of the SCFT.

» When {m;} = 0, the theory is conformal invariant, and has a
global internal symmetry u(2)r & f, where u(2)p is the N' =2
R-symmetry and f is the flavor symmetry algebra.

» On the CB,

» {u =0} = conformal vacua.

» {u # 0} = scale invariance (Sl) is spontaneously broken
(scaling dimension A(u) > 0).



Seiberg-Witten data

» We systematically study and classify the possible geometries of
rank-1 CBs with planar topology, i.e., CB ~ C globally.

» Let u be the global complex coordinate, and {m;} are the
relevant deformation parameters of the SCFT.

i =0} [ £0}

» {m;} # 0 = flavor symmetry explicitly broken since A(m;) =1
and m; € adj(F).
» CB is deformed.
» {u=0} = {u;}: the tip of the cone is spitted to multiple
tips, where sit scale-invariant vacuum with flavor subalgebras.
» {u # wu;} = Scale invariance is explicitly broken, and scaling
structure is lost.
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» The low energy u(1) gauge coupling and BPS central charges
can be determined from the curve and form.



Seiberg-Witten data

» In scale-invariant case the curve degenerates as one of Kodaira's

possibilities:

Name singular SW curve deg(Disc,) | A(u)

17 y? = af + u 10 6

111+ y? =23+ u T 9 4

A% y? = a3 +ut 8 3

| =T e 6 2
v y? = x + u? 4 3/2
111 y? = x + uz 3 4/3
II y? =23 +u 2 6/5

¥ (n>0) | y? =23 +ux? + A=2yn "3 n+6 2

L, (n>0)| y? = (x—1)(z* + A"™u") n 1

» Degree of the discriminant is an invariant under deformation.
» [,,/I" < IR-free u(1)/su(2) gauge theories with scale A.



» Mass deformations split Sl singularity into multiple singularities
such that total degree of discriminant remains the same.

» There are different deformation patterns for each Sl singularity.
» E.g., maximal deformation of IT* singularity splits /7* — {I;'0}
(ten Iy singulariities). It corresponds to CFT with f = FEj:

L I I
IT* /@ ®©®0® gy
() deformation
1@ 'YX e/
L I I
mi:O mi;«éO

» Discriminant has 10 distinct zeros:

Disc, = u'V + - -



» Mass deformations split Sl singularity into multiple singularities
such that total degree of discriminant remains the same.

» There are different deformation patterns for each Sl singularity.
» E.g., sub-maximal deformation of IT* singularity splits

IT* — {115, I4}. It corresponds to CFT with § = Cs:

I
IT* e @ eI
) deformation e
1@ ) e/
I
m; = 0 my; 75 0

» Discriminant has 7 distinct zeros:

Discx:(u6+...)(u+m)4’
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Seiberg-Witten data

» An ansatz for one-form satisfying RSK condition given by
Minahan-Nemeschansky:

AMu,m) = |2A(u) au+ 6bpx + 2W (My)

Yoo, (v, m) dx
+Z“ Z cjr:—l(,, (u,m) | y

w; orblt Yy

» a,b,W,r;, ., are unknowns. Most difficult are z,,, determined
by factorization of curve.

» Sum over Weyl orbits of flavor algebra weights w;. Weyl group
is determined by curve.

» Which weights appear and their coefficients r; determine
together with Weyl group the flavor symmetry.



Rank-1 SW geometries and N = 2 SCFT: classification

sing. deform. flavor symm. kg [12-c [ 24-a ] hy hi | ho
{1{%} Es 12 62 95 — 0 29

{1]63, 14} Cs 7 49 82 10 5 16

" {13, 17} A3 % Zo 14 42 75 401 4 9
{13, IV5_1} Ag X Zo 14 38 71 303 3 ?

{173} E7 8 38 59 — 0 17

. {If’z, I} C3® Ay (5.8) 29 50 (6,1) 3 8
1 {17, 17} A1 @ (u(l) % Z2) (10, ?) 24 45 2,02 2 ?
{1, IVE 1} u(l) x Zy ? 21 42 1,01 1 0

{I%} Eg 6 26 41 = 0 11

. {1, 14} Cy ® u(1) (4,7) 19 34 40 2 4
v {I1,1}} u(1) ? 15 30 1,91 1 0
1 {1%% Dy 4 14 23 — 0 5
0 {13, 14} A 3 9 18 2 1 1
{13} Ay 3 9 18 2 1 1

v {I}} Ag 3 8 14 — 0 2
111 {13} Aq 8/3 6 11 — 0 1
11 {17} o — 22/5 | 43/5 — 0 0
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Rank-1 SW geometries and /' = 2 SCFT: classification

» The entries in unshaded rows are all known from other
techniques (e.g., as Lagrangian theories, by RG flows, by
S-dualities, from string contructions.)

» The entries in rows shaded blue are predictions for new N = 2
SCFTs that are supported by new evidence, including new class-S
construction, 4d N’ = 3 SCFTs, and matching RG flows.

» There are question marks where there is not enough information
from the CB geometry to usefully constrain an entry.

» Note that even the known hg, hi and hq are not obtained
directly from CB geometry. The knowledge about them
depend on other independent constructions mentioned above;

» There is no available ways in determining u(1) flavor central
charge k).
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Further results on conformal and flavor central charges

» Central charges a, ¢, k; (with f non-Abelian) can be determined
in various ways, including S-duality argument, holographic
methods, 2d Chiral algebra, etc..

» We will discuss and generalize an approach given by Shapere
and Tachikawa which is directly related to the low energy data
computed from the topologically twisted CB partition function:

» We consider the rank-1 case, while this method is applicable to
a very large class of theories with arbitrary rank; one can get

24a = 5+ hy 4 12A(A) + 8A(B)
12¢ = 2+ hy 4+ 8A(B)
ki = Ty(2hy) — 2A(C))



Further results on conformal and flavor central charges

» For considering generic deformations (Z counts the number of
distinct zeros of discriminant of the curve):

A—1
A4) = =5

A 12¢—2—hy
A(B) = §Z#

i=1



Further results on conformal and flavor central charges

» For considering generic deformations (Z counts the number of
distinct zeros of discriminant of the curve):

A-—1
AM4) = ==
Z

12¢; — 2
A(B) Z
=1

» In turn the conformal central charge a and ¢ can be determined:

Z
A—1 12¢; — 2 — h;
Ma=54+h +3°0 Ay o2
a=5+h+3=—+ ; A :
12¢; — 2 — h;

12c—2+h1+AZ N

=1
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Summary and open questions

» Classification of 4d rank-1 N=2 SCFTs admit planar CB has
been performed

» A minimal set of N=2 SCFT data has been computed exactly
» Further discussion on the u(1) flavor central charge ky(1)?

» Similar story of 4d rank-1 N' = 2 SCFTs with non-planar CB?
» Generalization to higher rank SCFTs?

» Possible d=5 N=1/d=6 N=(1,0) versions?



