

伽玛光源关键技术与伽玛核物理研讨会

光核反应

—核天体物理中的关键核反应

郭 冰 中国原子能科学研究院 2016年6月23-25日

核天体物理是核物理与天体物理、天文学相融合形成的交叉学科。对微观尺度(10⁻¹⁵m)的核过程的了解,可以解释对宇观尺度(>10⁹m)的天文观测,构成了学科发展的动力和挑战,使核天体物理始终处于物理学科的前沿。

核过程不仅是恒星发光发热的主要能源,亦是宇宙中除氢以外所 有核素赖以合成的唯一机制。

Evolution of single stars

core-collapse SNe (mostly Type II)

explosive hydrogen burning

nova explosion mechanism

White Dwarf Star

Binary stars

Binary Companion Star

novae occur in binary star systems

two stars orbiting a common center of gravity

one of the stars is in a WHITE DWARF phase explosive hydrogen burning

nova explosion mechanism

White Dwarf Star collection onto surface of white dwarf

gravitational pull

Collected materials gets hot – 150,000,000K and dense – 10000 g/cc

Binary Companion Star

giant star expands

transfer of 10²¹ kg / year [100 trillion kg/sec] onto white dwarf

continues for 10000 years

新星、Type la超新星、X射线暴

HARDY

- 恒星能源
 - ▶ 1967年诺贝尔物理奖, Bethe发展了核反应理论, 提出恒星的能量来源, 开辟新领域
- 化学元素起源
 - ▶ 1983年诺贝尔物理奖, Fowler对恒星中的核反应进行了系统的实验和理论研究,发表了著名的"B²FH"文章,被誉为"核天体物理的圣经"
- 太阳中微子丢失之谜
 - ▶ 2002年诺贝尔物理奖, Davis和Koshiba发展了中微子探测 方法,提出了"太阳中微子丢失之谜"
 - ▶ 2015年诺贝尔物理奖, Kajita和McDonald发现中微子振荡, 解释了"太阳中微子丢失之谜"
- 重元素的产生
 - > 物理学11个未解之谜之一,将孕育重大发现

核科学长程发展规划

- 我国基金委数理科学13个优先领域
 极端条件下的核物理和核天体物理
- 《未来10年中国学科发展战略》,《中国核物理与等离子体物理发展战略》
 - 核天体物理是重点发展的领域之一
- 2007、2015美国核科学长程发展规划
 - 宇宙元素的起源是什么?
 - 驱动恒星演化和爆发的核反应是什么?
- 2010欧洲核科学长程发展规划
 - 元素来自何方并如何产生?
 - <u>在地球上如何重现并研究驱动恒星演化</u>
 <u>和恒星合成新元素的核反应?</u>
 <u>核反应如何影响恒星的命运?</u>

国家自然科学基金委员会 中国科学院

中国学科发展战略

CENTRAL CONT

- 1. What is dark matter?
- 2. What is dark energy?
- 3. <u>How were the heavy</u> <u>elements from iron to</u> <u>uranium made?</u>
- 4. Do neutrinos have mass?
- 5. Where do ultrahigh-energy particles come from?
- 6. Is a new theory of light and matter needed to explain what happens at very high energies and temperatures?
- 7. Are there new states of matter at ultrahigh temperatures and densities?
- 8. Are protons unstable?
- 9. What is gravity?
- 10. Are there additional dimensions?
- 11. How did the universe begin?

比铁轻的元素的产生

- 大爆炸核合成:氢、氦、锂
- 宇宙射线的散裂过程: 铍、 硼、部分的锂元素
- 恒星内部带电粒子的聚变或
 质子、α粒子俘获反应:碳
 到铁的各种元素

Isotope	p-isotope contribution (%) [14]	Solar abund. (2003) [10]	Solar abund. (1989) [9]	Change (%)
⁷⁴ Se	0.89 (4)	$5.80 imes 10^{-1}$	$5.50 imes 10^{-1}$	5.45
⁷⁸ Kr	0.355 (3)	2.00×10^{-1}	1.53×10^{-1}	30.72
⁸⁴ Sr	0.56(1)	1.31×10^{-1}	1.32×10^{-1}	-0.61
⁹² Mo	14.53 (30)	3.86×10^{-1}	$3.78 imes 10^{-1}$	2.12
⁹⁴ Mo	9.15 (9)	2.41×10^{-1}	2.36×10^{-1}	2.12
⁹⁶ Ru	5.54 (14)	1.05×10^{-1}	1.03×10^{-1}	2.23
⁹⁸ Ru	1.87 (3)	3.55×10^{-2}	3.50×10^{-2}	1.43
¹⁰² Pd	1.02(1)	1.46×10^{-2}	1.42×10^{-2}	2.82
¹⁰⁶ Cd	1.25 (6)	1.98×10^{-2}	2.01×10^{-2}	-1.49
108Cd	0.89 (3)	1.41×10^{-2}	1.43×10^{-2}	-1.40
113In	4.29 (5)	7.80×10^{-3}	7.90×10^{-3}	-1.27
112Sn	0.97 (1)	3.63×10^{-2}	3.72×10^{-2}	-2.55
114Sn	0.66(1)	2.46×10^{-2}	2.52×10^{-2}	-2.38
115Sn	0.34 (1)	1.27×10^{-2}	1.29×10^{-2}	-1.94
¹²⁰ Te	0.09(1)	4.60×10^{-3}	4.30×10^{-3}	6.98
¹²⁴ Xe	0.0952 (3)	6.94×10^{-3a}	5.71×10^{-3}	21.54 ^a
¹²⁶ Xe	0.0890 (2)	6.02×10^{-3a}	5.09×10^{-3}	18.27 ^a
¹³⁰ Ba	0.106(1)	4.60×10^{-3}	4.76×10^{-3}	-3.36
¹³² Ba	0.101 (1)	4.40×10^{-3}	4.53×10^{-3}	-2.87
¹³⁸ La	0.08881 (71)	3.97×10^{-4}	4.09×10^{-4}	-2.93
¹³⁶ Ce	0.185 (2)	2.17×10^{-3}	2.16×10^{-3}	0.46
¹³⁸ Ce	0.251 (2)	2.93×10^{-3}	2.84×10^{-3}	3.17
¹⁴⁴ Sm	3.07 (7)	7.81×10^{-3}	8.00×10^{-3}	-2.38
¹⁵² Gd	0.20(1)	6.70×10^{-4}	6.60×10^{-4}	1.52
¹⁵⁶ Dy	0.056 (3)	2.16×10^{-4}	2.21×10^{-4}	-2.26
¹⁵⁸ Dy	0.095 (3)	3.71×10^{-4}	3.78×10^{-4}	-1.85
¹⁶² Er	0.139 (5)	3.50×10^{-4}	3.51×10^{-4}	-0.28
¹⁶⁴ Er	1.601 (3)	4.11×10^{-3}	4.04×10^{-3}	1.73
¹⁶⁸ Yb	0.123 (3)	3.23×10^{-4}	3.22×10^{-4}	0.31
¹⁷⁴ Hf	0.16(1)	2.75×10^{-4}	2.49×10^{-4}	10.44
¹⁸⁰ Ta ^m	0.01201 (32)	2.58×10^{-6}	2.48×10^{-6}	4.03
^{180}W	0.12(1)	1.53×10^{-4}	1.73×10^{-4}	-11.56
¹⁸⁴ Os	0.02(1)	1.33×10^{-4}	1.22×10^{-4}	9.02
¹⁹⁰ Pt	0.012 (2)	1.85×10^{-4}	1.70×10^{-4}	8.82
¹⁹⁶ Hg	0.15(1)	6.30×10^{-4}	4.80×10^{-4}	31.25

35种p-核及其丰度

虽然这些p-核为数不多且丰度 较低,但它们的合成过程却牵涉 甚广,十分复杂。有的网路计算 包含约从¹H到²⁰⁹Bi 的1100种核 素, 涉及≈11000个核反应。 揭示p-过程机制对于完整理解 核合成有重要意义。从这30余个 p-核的结构可以找到p-过程机制 的重要线索。其质子数和中子数 几乎都是偶数; p-核丰度分布在

⁹²Mo, ¹¹²Sn 和¹⁴⁴Sm处出现峰值, 它们分别是中子和质子满壳核。

天体环境中黑体辐射γ-能谱密度的普朗克分布

凡是发生(x, y) 反应的天体环境中都存在与之相竞争的逆过程(y, x), 竞争结果取决于天体温度和核物理因素。在原初核合成, 恒星平稳氢 燃烧到硅燃烧各个阶段乃至爆发性天体事件中有许多需要测量的重 要(y, x) 反应。重点:铁以上重元素如何产生(p-过程)

- 研究辐射俘获反应的重要手段
 - (p, y)、(a, y)、(n, y)反应,产生能量,合成元素
- 研究方法的原理
 - 在伽玛光源上测量(γ, x)反应
 - 基于细致平衡原理,辐射俘获反应(x, γ)布居产物基态的 截面 σ_A 可通过测量光致裂解反应(γ, x)的截面 σ_B 导出
 - 研究产物核能级密度(NLD),统计模型中的基本参数
- 研究方法的优势
 - 天体物理能区某些反应的σ(γ,x)与σ(x,γ)之比可高达两个 量级
 - γ-射线在介质中的平均吸收长度容许采用厚靶
 - ¹⁶O(γ,α)¹²C比¹²C(α,γ)¹⁶O的反应产额高~6个数量级

- 激光电子γ源出现之前的几十年间,在电子加速器 (如德国的BLBE和S-DALINAC...)的韧致辐射装置上 已经测过一些与核合成相关的(γ, n)反应率,但迄今 (γ, α)和(γ, p)反应的测量极少,数据很不可靠。
- 虽然这些装置正在进行的标定光子能量的改进可提 升实验的品质和数据的可靠性,但利用提供准单能 且能量连续可调γ束的激光康普顿背散射光源开展光 致裂解反应的研究无疑是最佳的选择。

实例2: Mo(γ, n)->(n, γ)

 $^{97}Mo(n,\gamma)^{98}Mo$

0.01

E [MeV]^{0.1}

(d)

0.001

H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013).

Available online at www.sciencedirect.com

science
$$d$$
 direct.

PHYSICS REPORTS

Physics Reports 384 (2003) 1-84

www.elsevier.com/locate/physrep

The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status

M. Arnould*, S. Goriely

6.2. The puzzle of the origin of the rare nuclide ¹³⁸La: a nuclear physics solution?

The odd-odd neutron-deficient heavy nuclides ¹³⁸La and isomeric ¹⁸⁰Ta^m are among the rarest solar system species (Fig. 3). In spite of its very small abundance (¹³⁸La/¹³⁹La $\approx 10^{-3}$), ¹³⁸La is underproduced in all p-process calculations performed so far (Figs. 31–35). This results from an unfavorable balance between its main production by ¹³⁹La(γ ,n)¹³⁸La and its main destruction by ¹³⁸La(γ ,n)¹³⁷La, even in the PPLs that are most favorable to the ¹³⁸La production (in the $Z=Z_{\odot} M=$

- ¹³⁹La(γ, n)反应截面,有两家实验结果
- ¹³⁸La(γ, n)反应截面,目前仅有理论结果
- ¹³⁹La, 99.9% ; ¹³⁸La, 0.1%, ~1*10¹¹y

LCS,准单能γ-束 能量:6-15 MeV 强度:>10⁴⁻⁵/s(靶上)

⁷Be(p, γ)⁸B, PRL 77, 611 (1996). ⁶He(p, n)⁶Li, PLB 527, 50 (2002). ¹¹C(p, y)¹²N, NPA 728, 275 (2003). ⁸Li (n, γ) ⁹Li, PRC 71, 052801(R) (2005). ⁸B(p, γ)⁹C, NPA 761, 162 (2005). ¹³N(p, γ)¹⁴O, PRC 74, 035801 (2006). ²⁶Si(p, γ)²⁷P, PRC 73, 048801 (2006). ¹¹C(p, γ)¹²N, JPG 34, 103 (2007). ¹³N(p, p)¹³N, PRC 77, 044304 (2008). ²H(⁶He, ⁷Li)n, EPJA 44, 1 (2010). ¹⁴⁷Sm decay, EPJA 46, 69 (2010). ¹³*C*(p, γ)¹⁴N, EPJA 48, 1 (2012). ¹³C(a, n)¹⁶O, ApJ 756, 193 (2012). ⁸Li(p, γ)⁹Be, PRC 87, 017601 (2013). ¹²N(p, γ)¹³O, PRC 87, 015803 (2013). ²²Na(p, γ)²³Mg, PRC 88, 035801 (2013). ^{53,54}Ni decay, PRC 87, 024312 (2013). ¹⁵N(n, γ)¹⁶N, PRC 89, 012801(R) (2014). ¹⁶F proton width, PRC 89, 054315 (2014). Revalidation of IMME, PLB 756, 323 (2016).

CIAE部分工作

Parameters of the existing and future LCS γ -ray facilities around the world after 2000.

Facility name (Location)	Electron energy (GeV)	Laser energy (eV)	Photon energy (MeV)	Beam intensity (photons/s)
ELFE (DESY, Germany)	15~30	2.41~3.52	$3 \sim 20 \times 10^{3}$	107
LEPS (Hyogo, Japan)	8	3.5	1500~2400	$2.5 imes 10^{6}$
At NewSUBARU	1 (1.5)	1.17	17.6 (39.1)	2.5×10^{5}
(Hyogo, Japan)				
At Pohang light source	2.5	0.117	≤15	2×10^{8}
(Pusan,Korea)				
at Spring-8(Hyogo,Japan)	8	0.01	2~10.2	1.3×10^{3}
At NewSUBARU	1-1.5	0.117	1.72,2.72,3.91	$5.8 imes 10^{6}$
(Hyogo,Japan)				
UVSOR-II (Okazaki, Japan)	0.75	1.556	6.6	2.4×10^{6}
at TERAS (Ibaraki, Japan)	0.3-0.8	1.17	1-30	2.4×10^{5}
IGS (California, USA)	0.547 (Linac)	2.34	<10.8	~ 10 ¹⁴
at JAEA-ERL (Japan)	0.35 (ERL)	1.17	<2.2	1013
at ALBA (Barcelona, Spanish)	3.0	0.117,0.1-0.83,	0.5-16,16-	3×10^{8}
		1.17,2.34,3,51, 4.68	110,120-530	10^{4} - 10^{6}
SLEGS (Shanghai, China)	3.5	0.117/other	20MeV/0.1- 700MeV	108/105-6

- H. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003).
- H. Utsunomiya et al., Phys. Rev. C 74, 025806 (2006).
- S. Goko et al., Phys. Rev. Lett. 96, 192501 (2006).
- H. Utsunomiya et al., Phys. Rev. Lett. 100, 162502 (2008).
- A. Makinaga et al., Phys. Rev. C 79, 025801 (2009).
- H. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009).
- A. Makinaga et al., Phys. Rev. C 81, 035801 (2010).
- H. Utsunomiya et al., Phys. Rev. C 82, 064610 (2010).
- H. Utsunomiya et al., Phys. Rev. C 84, 055805 (2011).
- T. Kondo et al., Phys. Rev. C 86, 014316 (2012).
- H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013).
- C. Ugalde et al., Phys. Lett. B 719, 74 (2013).

•