$Z_{c}(3900)$ AS A $D \bar{D}^{*}$ Molecule from Pole Counting Rule

Yu-fei Wang

in collaboration with Qin-Rong Gong, Zhi-Hui Guo, Ce Meng, Guang-Yi Tang and Han-Qing Zheng

School of Physics, Peking University

2016/11/1

Contents

(9) Introduction
(2) Theoretical framework

3 Phenomenological analyses
4. Discussions and Conclusions

L Introduction

-Experimental Backgrounds

DISCOVERY OF $Z_{c}(3900), J / \Psi \pi$ SPECTRUM

- The hadron exotic state Z_{c} (3900) was first observed at BESIII in $e^{+} e^{-} \rightarrow X(4260) \rightarrow J / \Psi \pi^{+} \pi^{-}$process, $J / \Psi \pi$ spectrum Ablikim et al. (BESIII), PRL 110,252001(2013)

- Mass: $3899.0 \pm 3.6 \pm 4.9 \mathrm{MeV}$. Width: $46 \pm 10 \pm 20 \mathrm{MeV}$

L Introduction

-Experimental Backgrounds

DISCOVERY OF $Z_{c}(3900), D \bar{D}^{*}$ SPECTRUM

- Ablikim et al. (BESIII), PRL 112,022001(2014)

- Quantum numbers: $I\left(J^{P}\right)=1\left(1^{+}\right)$

LIntroduction

-Experimental Backgrounds

Confirm of Z_{c} BY Belle and CLEO

-Possible Theoretical Interpretations

Possible Theoretical Interpretations

- Z_{c} can not be embedded into conventional $c \bar{c}$ quark model, while it's close to $D \bar{D}^{*}$ threshold.
- $D \bar{D}^{*}$ molecular state
- Phenomenological Lagrangian:
[Dong et al, PRD 88,014030(2013)]
- Heavy quark flavor symmetry:
[Guo et al, PRD 88,054007(2013)]
- Electromagnetic structure:
[Wilbring, Hammer, and Meissner, PLB 726,326(2013)]
- ...

-Introduction

-Possible Theoretical Interpretations

Possible Theoretical Interpretations

- Elementary tetraquark state
- QCD sum rule:
[Wang and Huang, PRD 89,054019(2014)]
- tetraquark model:
[Maiani et al., PRD 87,111102(2013)]
- QCD sum rule:
[Dias et al, Phys. Rev. D 88,016004(2013)]
- Non-resonance
- cusp effect:
[Chen, Liu, and Matsuki, PRD 88,036008(2013)]
- triangle diagram singularity:
[Liu, Oka, and Zhao, PLB 753,297(2016)]
- Pang's talk.

-Introduction
 -Summary
 SUMMARY

- $Z_{c}(3900)$:
- $M \sim 3900 \mathrm{MeV}$, width tens of MeV , close to $D \bar{D}^{*}$ threshold.
- Significantly coupled to $D \bar{D}^{*}$ and $J / \Psi \pi$ channels $\left(h_{c} \pi\right.$ less marked)
- $I\left(J^{P}\right)=1\left(1^{+}\right)$
- Possible theoretical interpretations:
- $D \bar{D}^{*}$ molecule
- compact tetra-quark state (i.e. elementary state)
- non-resonance (cusp effect, ATS, etc.)
- Strategies:
- effective Lagrangian under C, P, χ and isospin symmetries
- calculation of the $X(4260) \rightarrow Z_{c} \pi \rightarrow D \bar{D}^{*} \pi, J / \Psi \pi \pi, h_{c} \pi \pi$ amplitudes
- combined fit to $J / \Psi \pi$ channel $J / \Psi \pi, \pi \pi$ data, $D \bar{D}^{*}$ data and $h_{c} \pi$ data (as background)
- find pole position and use pole counting rule
- Pole counting rule [Morgan, NPA 543,632(1992)] :
- based on potential scattering and effective range expansion
- only one pole near threshold \rightarrow the pole corresponds to a molecular state
- two poles near threshold \rightarrow the poles indicate an elementary state

EFFECTIVE RANGE EXPANSION

- In non-relativistic k plane, for s wave phase shift k : $k \cot \delta=-1 / a+r_{e} / 2 k^{2}+o\left(k^{4}\right)$
- a : scattering length. r_{e} : effective range.
- Partial wave S matrix:

$$
S(k)=\frac{\frac{r_{e}}{2} k^{2}+\mathrm{i} k-\frac{1}{a}}{\frac{r_{e}}{2} k^{2}-\mathrm{i} k-\frac{1}{a}}
$$

- Constraint on the two poles: $\left|k_{1}\right|+\left|k_{2}\right| \geq\left|k_{1}+k_{2}\right|=$ $2 /\left|r_{e}\right|$

Pole counting rule

- Potential scattering $\rightarrow r_{e} \sim L$ (the range of potential interaction) \rightarrow AT MOST one pole lie in $|k|<1 / L$.
- Two poles near threshold \rightarrow poles are generated by hidden channel other than the explicit potential \rightarrow there exists an elementary state.
- In multi-channel scattering, only one pole (bound state or virtual state) coupled to the inelastic threshold may split to a pair of resonance, which also represents a potential generated molecular.
- Single channel case:
- $r_{e}=2 \int_{0}^{\infty} d r\left[\varphi_{0}^{2}(r)-\psi_{0}^{2}(r)\right]$
- $\psi_{0}^{2}(r)$: solution of radial Schrödinger equation at $k=0$.
- $\varphi_{0}^{2}(r)$: asymptotic form of $\psi_{0}^{2}(r)$ when $r \rightarrow \infty$.
- For short-ranged and weak potential $r_{e}=2 \int_{0}^{L} \cdots$, and the integrand takes $\cos ^{2}(\pi r / 2 L)$ form so $r_{e} \sim L$.
- Multi-channel case and relativistic partial wave dispersion relations give the same result.
- Two poles near threshold \rightarrow CDD poles in dispersion relation: $k \cot \delta=\left(\nu_{p} m^{2}-k^{2}\right) /\left(m^{2} g^{2}\right)+\cdots$, poles $k=$ $\pm m \sqrt{\nu_{p}}$.

-Theoretical framework
 -Strategies
 UNCERTAINTIES

- The condition $r_{e} \sim L$ dose not hold for too strong binding case/ potentials with strange mathematical structure.
- In multi-channel case, pole counting rule is satisfied only when the pertinent poles are dominated by one channel.
- Pole counting rule is a qualitative result rather than a quantitative theorem.

- Theoretical framework

-Effective Lagrangian

EFFECTIVE LAGRANGIANS

- For $X(4260) \rightarrow J / \psi\left(h_{c}\right) \pi \pi$ channel:
- $\mathcal{L}_{X J / \psi \pi \pi}=g_{1} X_{\mu} \psi_{\nu}\left\langle u^{\mu} u^{\nu}\right\rangle+g_{2} X_{\mu} \psi^{\mu}\left\langle u^{\nu} u_{\nu}\right\rangle+g_{3} X_{\mu} \psi^{\mu}\left\langle\chi_{+}\right\rangle+$
- $\mathcal{L}_{X Z_{c} \pi}=g_{4} \nabla_{\nu} X_{\mu}\left\langle Z_{c}^{\mu} u^{\nu}\right\rangle+\cdots$
- $\mathcal{L}_{Z c J / \Psi \pi}=g_{7} \nabla_{\nu} \psi_{\mu}\left\langle Z_{c}^{\mu} u^{\nu}\right\rangle+\cdots$
- $\mathcal{L}_{X h_{c} \pi \pi}=f_{8} \nabla^{\lambda} \nabla_{\rho} X_{\mu} H_{\nu}\left\langle u_{\lambda} u_{\sigma}\right\rangle \epsilon^{\mu \nu \rho \sigma}+\cdots$
- $\mathcal{L}_{Z_{c} h_{c} \pi}=f_{9} \nabla_{\alpha} H_{\nu}\left\langle Z_{c \mu} u_{\beta}\right\rangle+\cdots$
- Field operators:
- $X: X(4260) ; \psi: J / \psi ; Z_{c}: Z_{c}(3900) ; H: h_{c}$
- $\nabla^{\mu} X=\partial^{\mu} X+\left[\Gamma^{\mu}, X\right]$
- $\Gamma^{\mu}=\frac{1}{2}\left[u^{+}\left(\partial^{\mu}-i r^{\mu}\right) u+u\left(\partial^{\mu}-i i^{\mu}\right) u^{+}\right]$
- $\chi_{ \pm}=u^{+} \chi u^{+} \pm u \chi^{+} u, u_{\mu}=i\left\{u^{+} \partial_{\mu} u-u \partial_{\mu} u^{+}\right\}$
- $\chi=2 B(s+i p), u=\exp \left(\frac{i \Phi}{\sqrt{2} F}\right)$
- For $X(4260) \rightarrow D D^{*} \pi$ channel:

$$
\begin{aligned}
& \text { } \mathcal{L}_{X D D^{*} \pi}=f_{1} \nabla^{\nu} X^{\mu}\left\langle\bar{D}_{\mu}^{*} D u_{\nu}\right\rangle+f_{2} X^{\mu}\left\langle\nabla^{\nu} \bar{D}_{\mu}^{*} D u_{\nu}\right\rangle \\
& \quad+f_{3} \nabla^{\nu} X^{\mu}\left\langle\bar{D}_{\nu}^{*} D u_{\mu}\right\rangle+f_{4} X^{\mu}\left\langle\nabla_{\mu} \bar{D}^{* \nu} D u_{\nu}\right\rangle+\cdots \\
& \text { - } \mathcal{L}_{Z c D D *}=f_{7}\left[\left(\bar{D}_{\mu}^{* 0} D^{+}+D_{\mu}^{*+} \bar{D}^{0}\right) Z_{c}^{-\mu}+\text { h.c. }\right] \\
& \text { - } \mathcal{L}_{D \bar{D}^{*} D \bar{D}^{*}}=\lambda_{1}\left(D^{*+\mu} \bar{D}^{0} D_{\mu}^{*-} D^{0}+D^{+} \bar{D}^{* 0 \mu} D^{-} D_{\mu}^{* 0}+\text { h.c. }\right)+ \\
& \\
& \lambda_{2}\left(D^{*+\mu} \bar{D}^{0} D^{-} D_{\mu}^{* 0}+D^{+} \bar{D}^{* 0 \mu} D_{\mu}^{*-} D^{0}+\text { h.c. }\right) \\
& \text { - } \mathcal{L}_{D D^{*} J / \psi \pi}=\lambda_{3} \nabla^{\nu} \psi^{\mu}\left\langle\bar{D}^{* \mu} D u_{\nu}\right\rangle+\lambda_{4} \psi^{\mu}\left\langle\nabla^{\nu} \bar{D}^{* \mu} D u_{\nu}\right\rangle \\
& \quad+\lambda_{5} \nabla^{\nu} \psi^{\mu}\left\langle\bar{D}^{* \nu} D u_{\mu}\right\rangle+\lambda_{6} \psi^{\mu}\left\langle\nabla^{\mu} \bar{D}^{* \nu} D u_{\nu}\right\rangle+\cdots \\
& \bullet \\
& \mathcal{L}_{D \bar{D}^{*} h_{c} \pi}=\lambda_{9} \nabla^{\alpha} H^{\nu}\left\langle\bar{D}^{* \mu} D u^{\beta}\right\rangle+\lambda_{10} H^{\nu}\left\langle\nabla^{\alpha} \bar{D}^{* \mu} D u^{\beta}\right\rangle+\cdots
\end{aligned}
$$

- Heavy quark spin symmetry $\rightarrow \lambda_{1}=\lambda_{2}$

- Theoretical framework

LFeynman diagrams

FEYNMAN DIAGRAMS

- Theoretical framework

LFeynman diagrams

COMPOUND 3- VERTICES

- Theoretical framework

-Feynman diagrams

COMPOUND 4- VERTICES

$=$

-Theoretical framework
 LFeynman diagrams
 DIFFERENT MECHANISMS TO GENERATE Z_{c}

- Z_{c} : dynamically generated particle / basic d.o.f
- Different mechanisms:
- pure dynamical (Fit I, D, \bar{D}^{*} bubble chain) $\rightarrow g_{4}, g_{5}, f_{5}, f_{7}=$ 0
- pure explicit Z_{c} field (Fit II, Breit-Wigner Z_{c} propagator) $\rightarrow \lambda_{1}=0$
- a mixture $\rightarrow \lambda_{1} \neq 0, f_{7} \neq 0$
-Phenomenological analyses
LFit to $J / \Psi \pi \pi$ channel, $\pi \pi$ spectrum

FIT TO $J / \Psi \pi \pi$ CHANNEL, $\pi \pi$ SPECTRUM

-Phenomenological analyses
LFit to $J / \Psi \pi, h_{c} \pi$, and $D \bar{D}^{*}$ spectrums

FIT TO $J / \Psi \pi, h_{c} \pi$, AND $D \bar{D}^{*}$ SPECTRUMS

—Phenomenological analyses
—Fit to $J / \Psi \pi, h_{c} \pi$, and $D \bar{D}^{*}$ spectrums

- Fit quality:

Fit method	Pure bubble (Fit I)	Pure Breit-Wigner (Fit II)
$\frac{\chi^{2}}{\text { d.o.f }}$	$\frac{454}{291-28}=1.726$	$\frac{497}{291-26}=1.875$

- A mixed fit does not obviously improve the total χ^{2}.
- The overall quality of Fit I and Fit II are quite similar!

LPole searching

Pole searching

- Ignorance of $h_{c} \pi$ channel \rightarrow a two channel system
- I ~ IV Riemann sheet:
$\left(\rho_{J / \Psi \pi}, \rho_{\bar{D}^{*}}\right) \sim(+,+)(-,+)(-,-)(+,-)$
- Pole position (only near-threshold poles)

	Sheet I	Sheet II	Sheet III	Sheet IV
Fit I	-	$3.87988 \pm 0.00390 i \mathrm{GeV}$	-	-
Fit II	-	-	-	$3.87909 \pm 0.00143 i \mathrm{GeV}$

- Only one pole near threshold $\rightarrow Z_{c}$ is $D \bar{D}^{*}$ molecular state!
(Fit Il also contains another far away pole.)

-Discussions and Conclusions
 SUMMARY

- Main propose: study the nature of $Z_{c}(3900)$ state.
- Effective Lagrangians with C,P, χ and isospin symmetry are employed.
- Near threshold singularities are built via resummation.
- Three fits to experimental data are taken: one for pure dynamically generated Z_{c}, another for pure explicit Z_{c} field, and the last for mixture case.
- Different fits give similar χ^{2}, while only one pole is found in s plane. According to pole counting rule, Z_{c} is a $D \bar{D}^{*}$ molecular.

SOME REMARKS

- A near-threshold state does not trivially correspond to a molecular state, e.g. X (3872).
- An explicit Z_{c} field does not trivially leads to an elementary Z_{c} - the Breit-Wigner propagator always produces two poles, but in molecular case one of them would be far away from threshold.
- As for non-resonance case, anomalous triangle singularity (ATS) is investigated (Pang's talk).
- Alternative criterion to distinguish molecular states and elementary states besides pole counting rule?

SPECTRAL DENSITY FUNCTION SUM RULE

- Spectral density function sum rule [Baru et. al. PLB 586,53(2003)] : based on a coupled channel non-relativistic QM: $C(E)\left|E_{0}\right\rangle+\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \chi^{\mathbf{k}}(E)\left|E_{\mathbf{k}}\right\rangle$, one elementary state $\left|E_{0}\right\rangle$ plus infinite continuous states.
- For resonance states with energy E and momentum k hidden in continuous state, $w(E)=\frac{\mu k}{2 \pi^{2}}\left|C^{\mathbf{k}}(E)\right|^{2}(E=$ $k^{2} / 2 \mu$). μ : two particle reduced mass.
- Sum rule: $|C(-B)|^{2}+\int_{0}^{\infty} w(E) d E=1$, with $Z=|C(-B)|^{2}$ the possibility for a bound state to be elementary.
- The possibility for a resonance to be elementary: $\mathcal{Z}=$ $\int_{E_{\text {min }}}^{E_{\text {max }}} w(E) d E$. The integral interval is where the resonance locate.

SPECTRAL DENSITY FUNCTION SUM RULE

- For Z_{c}, two channel Flatté formula ($E=0: D \bar{D}^{*}$ threshold)

$$
w(E)=\frac{1}{2 \pi} \frac{g_{1} \sqrt{2 \mu E} \theta(E)+\Gamma_{0}}{\left|E-E_{0}+\frac{i}{2} g_{1} \sqrt{2 \mu E}+\frac{i}{2} \Gamma_{0}\right|^{2}}
$$

- Parameters from fit and matching: $E_{0}=0.02800 \mathrm{GeV}$, $\Gamma_{0}=0.01333 \mathrm{GeV}, g_{1}=0.4910$.
- Integral intervals: $\left[E_{c}-n \Gamma, E_{c}+n \Gamma\right]$, for $E_{c}=0.005000$ GeV and $\Gamma=0.02984 \mathrm{GeV} ; n=1 / 2,1,2,3$.

SPECTRAL DENSITY FUNCTION SUM RULE

- Results

n	$1 / 2$	1	2	3
\mathcal{Z}	12.58%	20.62%	31.97%	39.67%

- This method contains some ambiguities and uncertainties since the integral interval is arbitrary to some extent.
- However, the possibility is still smaller than 50% even if the interval become as large as 6Γ. So in quality Z_{c} is a molecular state.

Thank you!

Appendix

DECOMPOSITION OF AMP.S

- D, D^{*} propagators:

$$
\begin{aligned}
& \text { - } \Pi_{\mu \nu}=\int \frac{\mathrm{d}^{\mathrm{D}} k}{(2 \pi)^{\nu}} \frac{g_{\mu \nu}-\frac{k_{\mu} k \nu}{m_{D^{*}}}}{\left(k^{2}-m_{D^{*}}^{2}\right)\left[(p-k)^{2}-m_{D}^{2}\right]}=P_{T \mu \nu} \Pi_{T}+P_{L \mu \nu} \Pi_{L} \\
& \text { - } P_{T \mu \nu}=g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}, P_{L \mu \nu}=\frac{p_{\mu} p_{\nu}}{p^{2}}}
\end{aligned}
$$

- Transverse and longitudinal components (p : the momentum of Z_{c}):
- transverse part $1-i\left(\lambda_{1}+\frac{f_{7}^{2}}{p^{2}-m_{Z}^{2}}\right) \Pi_{T} \rightarrow$ pertinent poles
- longitudinal part $1-i\left(\lambda_{1}-\frac{f_{7}^{2}}{m_{2}^{2}}\right) \Pi_{L} \rightarrow$ far away poles

PARTIAL WAVE ANALYSIS \& FSI

- Extract S-wave part for contact tree vertex

- $\Gamma_{Z_{c}} \approx 40 \mathrm{MeV} \rightarrow$ ignorable final state interaction (FSI) in the second picture
- For $X(4260) \rightarrow J / \psi\left(h_{c}\right) \pi \pi$ FSI:
- $\mathcal{A}=\mathcal{A}_{X \rightarrow J / \Psi \pi \pi}^{\text {ree }} \alpha_{1}(s) T_{\pi \pi \rightarrow \pi \pi}+\mathcal{A}_{X \rightarrow J / \Psi K \bar{K}}^{\text {tree }} \alpha_{2}(s) T_{K \bar{K} \rightarrow \pi \pi}+\mathcal{A}^{\prime}$
- $\alpha_{i}=\frac{c_{0}^{i}}{s-s_{A}}+c_{1}^{i}+c_{2}^{i} s+\cdots$
(s_{A} : Adler zero. \mathcal{A}^{\prime} : amplitude w/o contact tree. T : amplitudes given by unitarized χ PT.)

