

Interactions between heavy and light mesons from chiral dynamics

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

2016 Workshop on Chiral EFT, Guilin, 28th Oct. – 02nd Nov., 2016

earlier papers since 2006: FKG, Shen, Chiang, Ping, Zou (2006); FKG, Hanhart, Krewald, Meißner (2008); FKG, Hanhart, Meißner (2009); Cleven et al. (2011); Liu et al. (2012); Yao, Du, FKG, Meißner (2015,2016); Du, FKG, Meißner (2016); ...

M. Albaladejo, P. Fernandez-Soler, FKG, C. Hidalgo-Duque, J. Nieves, arXiv:1610.06727 [hep-ph]

• Most discussed: charm-strange $D_{s0}^*(2317)$ and $D_{s1}(2460)$

Solution Notable feature: $M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} = M_{D^*} + M_D$

$D_{s0}^*(2317)$

• One of the key hadron resonances since 2003, lots of models:

 $c\bar{s}$, tetraquark, or their mixture, ... recent review: H.-X. Chen et al., arXiv:1609.08928 [hep-ph]

- dominantly *DK* molecule Barnes, Close, Lipkin (2003); van Beveren, Rupp (2003);
 Kolomeitsev, Lutz (2004); FKG, Shen, Chiang, Ping, Zou (2006); Gamermann et al. (2007); ...
 - Heavy quark spin symmetry \Rightarrow spin partner: a D^*K molecule natural consequence: $M_{D_{s1}(2460)} - M_{D^*_{s0}(2317)} = M_{D^*} + M_D$

FKG, Hanhart, Meißner, PRL102(2009)242004

In a region of the second sec

 $\Gamma(D_{s0}^*(2317) \to D_s\pi) = \mathcal{O}\left(100 \text{ keV}\right)$

Faessler et al., PRD76(2007)014005; Lutz,Soyeur, NPA813(2008)14; FKG, Hanhart, Krewald, Meißner, PLB666(2008)251; Liu, Orginos, FKG et al., PRD87(2013)014508

is
$$D_0^*(2400)$$
: $J^P = 0^+, \Gamma = (247 \pm 67) \text{ MeV}$ Belle (2004)

PDG2016:

$\textbf{2318} \pm \textbf{29}$	OUR AVERAGE Error includes scale factor of 1.7.							
$2297 \ {\pm}8 \ {\pm}20$	3.4k	AUBERT	2009AB	BABR	$B^- ightarrow D^+ \pi^- \pi^-$			
$2308 \pm \! 17 \pm \! 32$		ABE	2004D	BELL	$B^- ightarrow D^+ \pi^- \pi^-$			
$2407 \pm \!$	9.8k	LINK	2004A	FOCS	γ A			

• New measurements by LHCb lie between: (2360 ± 15) MeV

LHCb, PRD92(2015)012012

- In all experiments, one Breit–Wigner resonance was assumed
- Question: why $M_{D_0^*(2400)} \gtrsim M_{D_{s_0}^*(2317)}$?

is
$$D_0^*(2400)$$
: $J^P = 0^+, \Gamma = (247 \pm 67) \, {\sf MeV}$ Belle (2004)

PDG2016:

$\textbf{2318} \pm \textbf{29}$	OUR AVERAGE Error includes scale factor of 1.7.							
$2297 \ {\pm}8 \ {\pm}20$	3.4k	AUBERT	2009AB	BABR	$B^- ightarrow D^+ \pi^- \pi^-$			
$2308 \pm \! 17 \pm \! 32$		ABE	2004D	BELL	$B^- ightarrow D^+ \pi^- \pi^-$			
$2407 \pm \!$	9.8k	LINK	2004A	FOCS	γ A			

• New measurements by LHCb lie between: (2360 ± 15) MeV

LHCb, PRD92(2015)012012

In all experiments, one Breit–Wigner resonance was assumed

• Question: why
$$M_{D_0^*(2400)} \gtrsim M_{D_{s0}^*(2317)}$$
?

Lattice studies of the charmed scalar mesons

Lüscher's formula $\Rightarrow D\pi$ phase shifts ($M_{\pi} \approx 266 \text{ MeV}$)

 \Rightarrow BW parameters of $D_0^*(2400)$ consistent with PDG values

• $(S, I) = (0, \frac{1}{2})$: first coupled-channel lattice calculation including interpolating fields for $c\bar{q} + D\pi + D\eta + D_s\bar{K}$: Moir et al. (Hadron Spectrum Col.), JHEP1610(2016)011 found a bound state pole at (2275.9 ± 0.9) MeV slightly below $D\pi$ threshold (2276.4 ± 0.9) MeV (at $M_{\pi} \approx 391$ MeV)

Lattice studies of the charmed scalar mesons

Lüscher's formula $\Rightarrow D\pi$ phase shifts ($M_{\pi} \approx 266 \text{ MeV}$)

 \Rightarrow BW parameters of $D_0^*(2400)$ consistent with PDG values

• $(S, I) = (0, \frac{1}{2})$: first coupled-channel lattice calculation including interpolating fields for $c\bar{q} + D\pi + D\eta + D_s\bar{K}$: Moir et al. (Hadron Spectrum Col.), JHEP1610(2016)011 found a bound state pole at (2275.9 ± 0.9) MeV slightly below $D\pi$ threshold (2276.4 ± 0.9) MeV (at $M_{\pi} \approx 391$ MeV)

Setup of the lattice calculation by Moir et al.

- Meson masses: $M_{\pi} = 391 \text{ MeV}, M_D = 1885 \text{ MeV}, \dots$
- three volumes: $16^3 \times 128$, $20^3 \times 128$, $24^3 \times 128$
- for coupled channels: they parametrize the T-matrix with the K-matrix formalism

$$T_{ij}^{-1}(s) = K_{ij}^{-1}(s) + I_{ij}(s)$$

 $I_{ij}(s)$: in fact loop function evaluated with a subtracted dispersion integral $K_{ij}(s)$: different forms of the *K*-matrix were used, summarized as

$$K_{ij} = \left(g_i^{(0)} + g_i^{(1)}s\right) \left(g_j^{(0)} + g_j^{(1)}s\right) \frac{1}{m^2 - s} + \gamma_{ij}^{(0)} + \gamma_{ij}^{(1)}s$$

• fit to computed energy levels with the parametrized *T*-matrix, then extract its poles: model dependence enters

Setup of the lattice calculation by Moir et al.

- Meson masses: $M_{\pi} = 391 \text{ MeV}, M_D = 1885 \text{ MeV}, \dots$
- three volumes: $16^3 \times 128$, $20^3 \times 128$, $24^3 \times 128$
- For the I = 1/2, $J^P = 0^+$ sector: one pole at (2275.9 ± 0.9) MeV

- These positive-parity charmed mesons couple to the ground state charm and light pseudoscalar mesons (ϕ) in *S*-wave
- scattering phase shifts \Rightarrow Omnès representation of heavy-light form factors \Rightarrow accurate determination of CKM matrix elements from $D(\bar{B}) \rightarrow \pi \ell \nu$

Flynn, Nieves (2001,2007)

- not far from the thresholds \Rightarrow chiral EFT for matter field
- D^{*}_{s0}/D^{*}₀ should appear as poles in scattering amplitudes
 ⇒ needs a nonperturbative treatment: unitarized ChPT

Oller, Oset (1997); Oller Meißner (2001); ...

$$T^{-1}(s) = V^{-1}(s) - G(s)$$

V(s): to be derived from chiral Lagrangian G(s): 2-point scalar loop functions, regularized with a subtraction constant $a(\mu)$

- These positive-parity charmed mesons couple to the ground state charm and light pseudoscalar mesons (ϕ) in *S*-wave
- scattering phase shifts \Rightarrow Omnès representation of heavy-light form factors \Rightarrow accurate determination of CKM matrix elements from $D(\bar{B}) \rightarrow \pi \ell \nu$

Flynn, Nieves (2001,2007)

- not far from the thresholds \Rightarrow chiral EFT for matter field
- D_{s0}^*/D_0^* should appear as poles in scattering amplitudes
 - \Rightarrow needs a nonperturbative treatment: unitarized ChPT

Oller, Oset (1997); Oller Meißner (2001); ...

$$T^{-1}(s) = V^{-1}(s) - G(s)$$

V(s): to be derived from chiral Lagrangian

G(s): 2-point scalar loop functions, regularized with a subtraction constant $a(\mu)$

• The leading order Lagrangian:

$$\mathcal{L}^{(1)}_{\phi P} = D_{\mu} P D^{\mu} P^{\dagger} - m^2 P P^{\dagger}$$

with $P=(D^0,D^+,D^+_s)$ denoting the $D\mbox{-mesons},$ and the covariant derivative being

$$D_{\mu}P = \partial_{\mu}P + P\Gamma^{\dagger}_{\mu}, \quad D_{\mu}P^{\dagger} = (\partial_{\mu} + \Gamma_{\mu})P^{\dagger},$$

$$\Gamma_{\mu} = \frac{1}{2} \left(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger} \right),$$

where $u_{\mu} = i \left[u^{\dagger} (\partial_{\mu} - ir_{\mu}) u + u (\partial_{\mu} - il_{\mu}) u^{\dagger} \right]$, $u = e^{i\lambda_a \phi_a/(2F_0)}$ Burdman, Donoghue (1992); Wise (1992); Yan et al. (1992)

• this gives the Weinberg–Tomozawa term for $P\phi$ scattering

Chiral Lagrangian (II)

• At the next-to-leading order $\mathcal{O}\left(p^2
ight)$: FKG, Hanhart, Krewald, Meißner, PLB666(2008)251

$$\mathcal{L}_{\phi P}^{(2)} = P \left[-h_0 \langle \chi_+ \rangle - h_1 \chi_+ + h_2 \langle u_\mu u^\mu \rangle - h_3 u_\mu u^\mu \right] P^\dagger + D_\mu P \left[h_4 \langle u_\mu u^\nu \rangle - h_5 \{ u^\mu, u^\nu \} \right] D_\nu P^\dagger ,$$

$$\chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \quad \chi = 2B_0 \operatorname{diag}(m_u, m_d, m_s)$$

• LECs: $h_{1,3,5} = \mathcal{O}(N_c^0), h_{2,4,6} = \mathcal{O}(N_c^{-1})$ $M_{D_s} - M_D \Rightarrow h_1 = 0.42$

 h_0 : can be fixed from lattice results of charmed meson masses $h_{2,3,4,5}$: to be fixed from lattice results on scattering lengths

• Extensions to $\mathcal{O}(p^3)$, see D.-L. Yao, M.-L. Du, FKG, U.-G. Meißner, JHEP1511(2015)058 renormalization: M.-L. Du, FKG, U.-G. Meißner, arXiv:1607.00822 [hep-ph], J.Phys.G., in print PCB-term subtraction in EOMS scheme using path integral:

M.-L. Du, FKG, U.-G. Meißner, arXiv:1609.06134 [hep-ph], JHEP1610(2016)122

Chiral Lagrangian (II)

• At the next-to-leading order $\mathcal{O}\left(p^2
ight)$: FKG, Hanhart, Krewald, Meißner, PLB666(2008)251

$$\mathcal{L}^{(2)}_{\phi P} = P \left[-h_0 \langle \chi_+ \rangle - h_1 \chi_+ + h_2 \langle u_\mu u^\mu \rangle - h_3 u_\mu u^\mu \right] P^\dagger + D_\mu P \left[h_4 \langle u_\mu u^\nu \rangle - h_5 \{ u^\mu, u^\nu \} \right] D_\nu P^\dagger ,$$

$$\chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, \quad \chi = 2B_0 \operatorname{diag}(m_u, m_d, m_s)$$

• LECs: $h_{1,3,5} = \mathcal{O}(N_c^0), h_{2,4,6} = \mathcal{O}(N_c^{-1})$ $M_{D_s} - M_D \Rightarrow h_1 = 0.42$

 h_0 : can be fixed from lattice results of charmed meson masses $h_{2,3,4,5}$: to be fixed from lattice results on scattering lengths

• Extensions to $\mathcal{O}(p^3)$, see D.-L. Yao, M.-L. Du, FKG, U.-G. Meißner, JHEP1511(2015)058 renormalization: M.-L. Du, FKG, U.-G. Meißner, arXiv:1607.00822 [hep-ph], J.Phys.G., in print PCB-term subtraction in EOMS scheme using path integral:

M.-L. Du, FKG, U.-G. Meißner, arXiv:1609.06134 [hep-ph], JHEP1610(2016)122

Fit to lattice data on scattering lengths in 5 simple channels:

 $D\bar{K}(I = 1, I = 0), D_sK, D\pi(I = 3/2), D_s\pi$: no disconnected contribution parameters: h_2, h_3, h_4, h_5 and $a(\mu)$

• Prediction: pole in the (S, I) = (1, 0) channel: 2315^{+18}_{-28} MeV. Direction: Exp.: $M_{D^*_{s0}(2317)} = (2317.7 \pm 0.6)$ MeV

DK dominant PDG2016 • Fit to lattice data on scattering lengths in 5 simple channels:

 $D\bar{K}(I=1,I=0), D_sK, D\pi(I=3/2), D_s\pi$: no disconnected contribution

• Pole in the (S,I)=(1,0) channel fixed to $M_{D^*_{s0}(2317)}=2317.8~{\rm MeV}$ by adjusting $a(\mu)$

Energy levels in a finite volume

- Goal: predict finite volume energy levels for I = 1/2, and compare with recent lattice data by the Hadron Spectrum Collaboration JHEP1610(2016)011 \Rightarrow insights into $D_0^*(2400)$
- In a finite volume, momentum gets quantized: $\vec{q} = \frac{2\pi}{L} \vec{n}, \vec{n} \in \mathbb{Z}^3$
- Loop integral G(s) gets modified: $\int d^3 \vec{q} \rightarrow \frac{1}{L^3} \sum_{\vec{q}}$, and one gets M. Döring et al., EPJA47(2011)139

$$\widetilde{G}(s,L) = G(s) + \underbrace{\frac{1}{L^3} \sum_{\vec{n}}^{|\vec{q}| < \Lambda} I(\vec{q}) - \int_0^{\Lambda} \frac{q^2 \mathrm{d}q}{2\pi^2} I(\vec{q})}_{\text{finite volume effect}}$$

 $I(\vec{q})$: loop integrand

• Energy levels obtained by as poles of $\widetilde{T}(s,L)$:

$$\widetilde{T}^{-1}(s,L) = V^{-1}(s) - \widetilde{G}(s,L)$$

Predictions versus recent lattice results

• Postdicted finite volume energy levels for I = /2 agree very well with lattice results: (not a fit !)

There are two poles!

Feng-Kun Guo (ITP)

Two poles in I = 1/2 sector

- Two poles/states in I = 1/2 sector were found in Kolomeitsev, Lutz (2004); FKG, Shen, Chiang, Ping, Zou (2006); FKG, Hanhart, Meißner (2009); Z.-H. Guo, Meißner, D.-L. Yao (2015)
- The remarkable agreement with lattice data provides a strong evidence

Two poles in I = 1/2 sector

- Two poles/states in I = 1/2 sector were found in Kolomeitsev, Lutz (2004); FKG, Shen, Chiang, Ping, Zou (2006); FKG, Hanhart, Meißner (2009); Z.-H. Guo, Meißner, D.-L. Yao (2015)
- The remarkable agreement with lattice data provides a strong evidence

Feng-Kun Guo (ITP)

Experimental signal?

• The higher pole couples most strongly to the $D_s \bar{K}$

& is close to the $D_s \bar{K}$ threshold

 \Rightarrow near-threshold enhancement in $D_s \bar{K}$ invariant mass distribution

Experimental signal?

BaBar, PRL100(2008)171803; Belle, PRD80(2009)052005

- constructed unitarized chiral amplitudes for *S*-wave scattering between heavy and light pseudoscalar mesons
- with parameters (4 LECs and one subtraction constant) fixed from lattice data for scattering lengths in a few channels, other channels can be predicted
- predicted $D_{s0}^*(2317)$ mass correctly: dominantly DK
- predicted FV energy levels agree very well with lattice: strong evidence for two poles in the (S, I) = (0, 1/2) sector \Rightarrow two states in the $D_0^*(2400)$ mass region
- Chiral dynamics + coupled channels \Rightarrow two-pole structures: • $\Lambda(1405)$: very well-known, couple dominantly to $\Sigma\pi$ and $N\bar{K}$, respectively Hyodo, Meißner, review in PDG2016; Oller, Meißner (2001); Jido et al. (2003); ...

 ${}^{
m I\!ee} K_1(1270)$: 2 poles couple most strongly to $K^*\pi$ and ho K – L.-S. Geng et al (2007)

- constructed unitarized chiral amplitudes for *S*-wave scattering between heavy and light pseudoscalar mesons
- with parameters (4 LECs and one subtraction constant) fixed from lattice data for scattering lengths in a few channels, other channels can be predicted
- predicted $D_{s0}^*(2317)$ mass correctly: dominantly DK
- predicted FV energy levels agree very well with lattice: strong evidence for two poles in the (S, I) = (0, 1/2) sector \Rightarrow two states in the $D_0^*(2400)$ mass region
- Chiral dynamics + coupled channels \Rightarrow two-pole structures: • $\Lambda(1405)$: very well-known, couple dominantly to $\Sigma\pi$ and $N\bar{K}$, respectively Hyodo, Meißner, review in PDG2016; Oller, Meißner (2001); Jido et al. (2003); .

 $I = K_1(1270)$: 2 poles couple most strongly to $K^*\pi$ and ho K – L.-S. Geng et al (2007)

- constructed unitarized chiral amplitudes for *S*-wave scattering between heavy and light pseudoscalar mesons
- with parameters (4 LECs and one subtraction constant) fixed from lattice data for scattering lengths in a few channels, other channels can be predicted
- predicted $D_{s0}^*(2317)$ mass correctly: dominantly DK
- predicted FV energy levels agree very well with lattice: strong evidence for two poles in the (S, I) = (0, 1/2) sector \Rightarrow two states in the $D_0^*(2400)$ mass region
- Chiral dynamics + coupled channels \Rightarrow two-pole structures: • $\Lambda(1405)$: very well-known, couple dominantly to $\Sigma\pi$ and $N\bar{K}$, respectively Hyodo, Meißner, review in PDG2016; Oller, Meißner (2001); Jido et al. (2003); ... • $K_1(1270)$: 2 poles couple most strongly to $K^*\pi$ and ρK L-S. Geng et al (2007)

- constructed unitarized chiral amplitudes for *S*-wave scattering between heavy and light pseudoscalar mesons
- with parameters (4 LECs and one subtraction constant) fixed from lattice data for scattering lengths in a few channels, other channels can be predicted
- predicted $D_{s0}^*(2317)$ mass correctly: dominantly DK
- predicted FV energy levels agree very well with lattice: strong evidence for two poles in the (S, I) = (0, 1/2) sector \Rightarrow two states in the $D_0^*(2400)$ mass region
- Chiral dynamics + coupled channels \Rightarrow two-pole structures: • $\Lambda(1405)$: very well-known, couple dominantly to $\Sigma \pi$ and $N\bar{K}$, respectively

Hyodo, Meißner, review in PDG2016; Oller, Meißner (2001); Jido et al. (2003); ...

 $\mathbb{I} K_1(1270)$: 2 poles couple most strongly to $K^*\pi$ and ho K L.-S. Geng et al (2007)

- constructed unitarized chiral amplitudes for *S*-wave scattering between heavy and light pseudoscalar mesons
- with parameters (4 LECs and one subtraction constant) fixed from lattice data for scattering lengths in a few channels, other channels can be predicted
- predicted $D_{s0}^*(2317)$ mass correctly: dominantly DK
- predicted FV energy levels agree very well with lattice: strong evidence for two poles in the (S, I) = (0, 1/2) sector \Rightarrow two states in the $D_0^*(2400)$ mass region
- Chiral dynamics + coupled channels \Rightarrow two-pole structures: • $\Lambda(1405)$: very well-known, couple dominantly to $\Sigma \pi$ and $N\bar{K}$, respectively

Hyodo, Meißner, review in PDG2016; Oller, Meißner (2001); Jido et al. (2003); ...

 $K_1(1270)$: 2 poles couple most strongly to $K^*\pi$ and ρK L.-S. Geng et al (2007)

regimes most famous: $f_0(500)$ and $f_0(980)$ in the $\pi\pi$ – $K\bar{K}$ system

Backup slides

SU(3) analysis

• In the SU(3) limit, irreps: $\overline{\mathbf{3}}\otimes \mathbf{8}=\overline{\mathbf{15}}\oplus \mathbf{6}\oplus\overline{\mathbf{3}}$

• Evolution of the two poles (LO) from the physical to the SU(3) symmetric case

