Role of $Y(4\overline{630})$ in the $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ reaction near threshold

Yan-Yan Wang

Collaborators: Qi-Fang Lü, En Wang, and De-Min Li

PRD94(2016)014025

Zhengzhou University

Sep 4, 2016

² Charmed baryon production reaction

3 The numerical results and discussions

Besides conventional mesons and baryons, QCD do not forbid other hadrons, which are named as exotic states.

XYZ states

XYZ states below 4.5 GeV.

S. Olsen, PoS Bormio 050 (2015).

Y(4630) and Y(4660)

- A new charmonium-like Y(4630), $J^{PC} = 1^{--}$, was firstly reported by the Belle collaboration in the exclusive $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_c$ process. $M = 4634^{+8+5}_{-7-8} \text{ MeV}, \Gamma = 92^{+40+10}_{-24-21} \text{ MeV}$
- Above the $\Lambda_c \Lambda_c$ threshold, another 1⁻⁻ resonance Y(4660) was observed in the process $e^+e^- \rightarrow \gamma_{\rm ISR} \pi^+ \pi^- \psi(2S)$ by the Belle collaboration and BaBar Collaboration.
 - $M = 4664 \pm 11 \pm 5 \text{ MeV}, \Gamma = 48 \pm 15 \pm 3 \text{ MeV}$

G. Pakhlova *et al.* [Belle Collaboration], Phys. Rev. Lett. **101**,172001 (2008)
X. L. Wang *et al.* [Belle Collaboration], Phys. Rev. Lett. **99**, 142002 (2007)
J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D **89**, 111103 (2014)

Charmed baryon production reaction

We investigate the charmed baryon production reaction $p\bar{p} \rightarrow \Lambda_c \bar{\Lambda}_c$ in the effective Lagrangian approach.

Feynman diagrams for $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ reaction.

Charmed baryon production reaction

The relevant effective Lagrangians of the vertexes can be written as

$$\mathcal{L}_{\Lambda_c pD} = ig_{\Lambda_c pD} \bar{\Lambda}_c \gamma_5 pD$$

 $\mathcal{L}_{\Lambda_c pD^*} = g_{\Lambda_c pD^*} \bar{\Lambda}_c \gamma^\mu pD^*_\mu$
 $\mathcal{L}_{Y\Lambda_c \bar{\Lambda}_c} = g_{Y\Lambda_c \bar{\Lambda}_c} Y_\mu \bar{\Lambda}_c \gamma^\mu \Lambda_c$
 $\mathcal{L}_{Yp\bar{p}} = g_{Yp\bar{p}} Y_\mu \bar{p} \gamma^\mu p$

X. D. Guo, D. Y. Chen, H.W. Ke, X. Liu, and X. Q. Li Phys. Rev. D 93, 054009 (2016).

Charmed baryon production reaction

According to the Feynman rules, the scattering amplitudes for the $p\bar{p} \rightarrow \Lambda_c \bar{\Lambda}_c$ reaction can be obtained straightforwardly with the above effective Lagrangians,

$$\mathcal{M}_{D} = g^{2}_{\Lambda_{c}pD} \mathcal{F}^{2}(q^{2}_{D}, m^{2}_{D}) \bar{\upsilon}(p_{1}, s_{1}) \gamma_{5} \upsilon(p_{3}, s_{3}) G_{D} \bar{u}(p_{4}, s_{4}) \gamma_{5} \upsilon(p_{2}, s_{2}),$$

$$\mathcal{M}_{D^*} = -g^2_{\Lambda_c p D^*} \mathcal{F}^2(q^2_{D^*}, m^2_{D^*}) \bar{\upsilon}(p_1, s_1) \gamma_\mu \upsilon(p_3, s_3) G^{\mu\nu}_{D^*} \bar{u}(p_4, s_4) \gamma_\nu u(p_2, s_2),$$

$$\mathcal{M}_{Y} = -g_{Y\Lambda_{c}\bar{\Lambda}_{c}}g_{Yp\bar{p}}F_{Y}(q_{Y}^{2}, m_{Y}^{2})\bar{\upsilon}(p_{1}, s_{1})\gamma_{\mu}\upsilon(p_{2}, s_{2})$$

$$G_{Y}^{\mu\nu}\bar{u}(p_{4}, s_{4})\gamma_{\nu}u(p_{3}, s_{3}),$$

The couplings constants

The Λ_cΛ̄_c is the dominant decay channel
The pp̄ decay ratio being 1%

$$\Gamma(Y(4630) \to \Lambda_c \bar{\Lambda}_c) = \frac{g_{Y\Lambda_c \bar{\Lambda}_c}^2 (m_Y^2 + 2m_{\Lambda_c}^2) |\vec{p}_{\Lambda_c}^{\rm cm}|}{6\pi m_Y^2},$$

$$\Gamma(Y(4630) \to p\bar{p}) = \frac{g_{Yp\bar{p}}^2 (m_Y^2 + 2m_p^2) |\vec{p}_p^{\rm cm}|}{6\pi m_Y^2}$$

 $g_{Y\Lambda_c\bar{\Lambda}_c} = 1.78, \ g_{Yp\bar{p}} = 0.087$

The monopole form factor for the *t*-channel D and D^* interaction vertices

$$\mathcal{F}(q^2, m^2) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2},$$

The cut-off parameter Λ can be parametrized as

$$\Lambda = m + \alpha \Lambda_{\rm QCD}, \ \Lambda_{\rm QCD} = 220 MeV$$

The form factor for s-channel Y(4630) state

$$F_Y(q^2, m^2) = \frac{\Lambda_Y^4}{\Lambda_Y^4 + (q^2 - m_Y^2)^2}, \ \Lambda_Y = 500 MeV$$

The propagators

The D and D^* meson propagators

$$G_D = \frac{i}{q^2 - m_D^2},$$

$$G_{D^*}^{\mu\nu} = -i \frac{g^{\mu\nu} - q^{\mu}q^{\nu}/m_{D^*}^2}{q^2 - m_{D^*}^2}.$$

The propagator for Y(4630) 1⁻⁻ state can be written as,

$$G_Y = -i \frac{g^{\mu\nu} - q^{\mu}q^{\nu}/m_Y^2}{q^2 - m_Y^2 + im_Y\Gamma_Y},$$

 $\Gamma_Y = 92$ MeV is the total width of the Y(4630) meson.

The total amplitude for the process $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ are the coherent sum of \mathcal{M}_D , \mathcal{M}_{D^*} , and \mathcal{M}_Y ,

$$\mathcal{M} = \mathcal{M}_D + \mathcal{M}_{D^*} + \mathcal{M}_Y.$$

The differential cross section

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\cos\theta} = \frac{1}{32\pi s} \frac{|\vec{p}_3^{\mathrm{c.m.}}|}{|\vec{p}_1^{\mathrm{c.m.}}|} \left(\frac{1}{4} \sum_{s_1, s_2, s_3, s_4} |\mathcal{M}|^2\right)$$

s is the invariant mass square of the $p\bar{p}$ system, θ denotes the angle of the outgoing baryon Λ_c relative to the beam direction in the c.m. frame.

Total cross section

Total cross sections for $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ reaction.

Differential cross sections

Differential cross sections for $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ reaction.

Discussions

The cut-off parameter for the D and D^* mesons exchanges $\Lambda = m + \alpha \Lambda_{\text{QCD}}$, with $\Lambda_{\text{QCD}} = 220$ MeV.

Total cross section of the $p\bar{p} \to \Lambda_c \bar{\Lambda}_c$ reaction varies with parameter α .

Within the effective Lagrangian approach, we have phenomenologically investigated the $p\bar{p} \rightarrow \Lambda_c \bar{\Lambda}_c$ reaction.

- The *t*-channel D and D^* mesons exchanges and the *s*-channel Y(4630) contribution.
- ② Clear bump structures and minor background.
- Search for charmonium-like state Y(4630).
- **(**) may be tested in the future by the $\bar{P}ANDA$ facility.

Thank You!