Intr/	od:	101	n
	Jui	100	

Infrared enhancement in single-baryon systems

Songlin Lv in collaboration with Bingwei Long

Sichuan University

The Third Symposium on Chiral Effective Field Theory November 1, 2016

(日)

Introduction	Power Counting 000	Numerical 00	Summary
Outline			

- 2 Power Counting
 - Standard counting
 - Infared enchancement

3 Numerical

- Loop integration
- Scaling of $\gamma(t)$

4 Summary

Introduction	Power Counting	Numerical 00	Summary
Outline			

- 2 Power Counting
- 3 Numerical

Introduction	Power Counting	Numerical	Summary
Heavy baryon VS	Covariant in single	-barvon system	

Heavy Baryon Chiral Perturbation Theory(HBChPT)

- Baryons have large masses compare to momentum(Q), it can be approximated as static object at leading order.
- The recoil terms are treated as subleading corrections.

Covariant Chiral Perturbation Theory

- Relaticistic Lagrangian of ChPT is manifestly Lorentz invariant, recoil corrections are in effect resummed.
- Phonomenological successes in several processes: Magnetic moments, baryon mass.

イロト イポト イヨト イヨト

Introduction	Power Counting	Numerical 00	Summary
Triangle diagram			

- Becher(1999) argued that we should use relativistic kinematics: analyticity problem of triangle diagram using static approximation.
- In covariant treament triangle diagram has a branch point in second Riemann sheet of $t(q^2)$, but it not appear in static approximation.
- Power counting must reflect the necessity of resummation: recoil terms are equal importance.
- Power counting change of two-nucleon reducible $loops(\sim m_N/Q)$.

Introduction	Power Counting	Numerical 00	Summary
Outline			

Power Counting
Standard counting
Infared enchancement

3 Numerical

④ Summary

<ロト <回ト < 注ト < 注ト

Introduction	Power Counting ●○○	Numerical 00	Summary
Standard co	unting		

The loop integral of triangle diagram is:

$$\gamma(t) \equiv i \int \frac{d^4k}{(2\pi)^4} \frac{1}{k_0 - \frac{\vec{k}^2}{2m_N} + i\epsilon} \frac{1}{k^2 - m_\pi^2 + i\epsilon} \frac{1}{(k-q)^2 - m_\pi^2 + i\epsilon}$$

When both pion propagators are on-shell, loop momentum

$$ec{k} = rac{ec{q}}{2} + \mathcal{O}(rac{ec{q}^2}{m_N}), k_0 = \sqrt{ec{q}^2 + m_\pi^2} [1 + \mathcal{O}(rac{ec{q}^2}{m_N})]$$

External three-monenta(\vec{q}) is of same order as pion mass: $Q \sim m_{\pi}$. $k_0 \sim Q, \vec{k} \sim Q$, recoil term $\vec{k}^2/2m_N \sim Q^2/m_N$ is subleading. The standard counting of loop integral $\gamma(t) \sim Q^4/Q^5 \sim Q^{-1}$

Introduction	Power Counting ○●○	Numerical 00	Summary
Infared ench	ancement		

Consider a particular unphysical region:

$$ec{q}^2 = -4m_\pi^2 + \mathcal{O}(\xi^2 m_\pi^2), ~~\xi = m_\pi/m_N$$

 \vec{k} and \vec{q} may take complex value. There exist a region of \vec{k} :

$$k_0\sim \sqrt{ec k^2+m_\pi^2}\sim \xi m_\pi$$

Cancellation between \vec{k}^2 and m_{π}^2 leads a small loop energy. Recoil term $\vec{k}^2/2m_N \sim \xi m_{\pi} \sim k_0$.

Recoil correction is necessary!

(日)

In this small region of \vec{k} :

$$|\vec{k} - rac{\vec{q}}{2}| \sim \xi m_{\pi}, \sqrt{(\vec{k} - \vec{q}\,)^2 + m_{\pi}^2} \sim \xi m_{\pi}$$

Loop intagral scales:

$$\gamma(t) \sim (\xi m_\pi)^4 rac{1}{\xi m_\pi} rac{1}{(\xi m_\pi)^2} rac{1}{(\xi m_\pi)^2} \sim rac{1}{\xi m_\pi}$$

Although phase space of \vec{k} is small, simultaneously on-shell pion and baryon prapagators provide a small denominator.

Enchanment of order $1/\xi!$

イロト イポト イヨト イヨト

Introduction	Power Counting	Numerical 00	Summary
Outline			

2 Power Counting

3 Numerical

- Loop integration
- Scaling of $\gamma(t)$

4 Summary

<ロト <回ト < 注ト < 注ト

Introduction	Power Counting 000	Numerical ●○	Summary
Integration result			

Difference between relativistic and recoil one is tiny.

Zoom in the region around $t = 4m_{\pi}^2$, the enhancement is clear:

$\begin{array}{c|c} \mbox{Introduction} & \mbox{Power Counting} & \mbox{Numerical} & \mbox{Summary} \\ \mbox{oo} & \mbox{o} \end{array}$

 $\gamma(t, m_{\pi}^2) \sim m_{\pi}^{-2}, m_{\pi}^{-1}$ near and far away $t = 4m_{\pi}^2$ respectively. Scale m_{π}^2 and t with a factor s, define function $g(s; t/m_{\pi}^2)$

$$g\left(s;t/m_{\pi}^{2}\right) \equiv m_{N}\gamma\left(s^{2}t^{\star},s^{2}m_{\pi}^{\star 2}\right)$$

Real part of g(s) scale between $\sim s^{-1}$ and $\sim s^{-2}$. Imaginary part of g(s) really scales as $\sim s^{-2}$ near $t = 4m_{\pi}^2$.

Introduction	Power Counting	Numerical 00	Summary
Outline			

2 Power Counting

3 Numerical

Introduction	Power Counting	Numerical 00	Summary
Summary			

- In a small region near two pion threshold, triangle diagram is enchanced by a factor m_N/m_{π} .
- In this small region, power counting changed and the recoil correction should be considered.
- Loop intagral scales as m_π^{-2} inside the enhancement window.

イロト イポト イヨト イヨト

Thank you!

ヘロト ヘロト ヘヨト ヘヨト