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SUMMARY



Width

In phenomenology study:

» Couple a bare state with a continuum: dispersive method
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» Wave function?
» Probability?



THE SIMPLEST FRIEDRICHS MODEL

» The system couples one bare state |1) and a continuum state
|w), which are eigenstates of the free Hamiltonian

Hy|1) = woll), Hy|lw) = w|w).

» Orthonormal condition: (1]1) =1, (1jw) =0, and
(ww") = §(w — ')
Completeness:  [1)(1] + [, dw|w)(w| =1

» The free Hamiltonian can be expressed as:

Hy = wo|1)(1] + /Ooow|w><w|dw

» Interaction: (w|V1) = A\ f(w), (W'|V]w) = (1|V]1) = 0.

V- /\/ ) wh{1] + F*(w)]1) (w]ldw



SOLUTION OF ENERGY EIGENFUNCTION

» Eigenvalue equation:
H|¥(x)) = (Ho + V)[¥) = z[¥(z)).

» Solution can be expanded as
W@) = al@)|t) + [ vl w))ds
0
» Using V1) = Af(w)|w), V]w) = Af*(w)|1), we have

wo — ) +)\/ [ (w)Y(z, w)dw =0,
(w—2)¢(z,w) + Af (w)a(z) =0.



CONTINUUM STATE SOLUTION

(wo — o) —i—)\/ (W) (z,w)dw =0,
(w = 2)(w,w) + Af(W)a(z) =0,

Eigenvalue = > 0, real

Yo (z,w) = —22@) 4o ()W - ),

w—xtie
(wo — x)ax(z) + Af*(2)y+(z) — ax(z ))\2 U(Jw)xi(:)dw - 0.
Solution: define n*(z) =z —wop — A2 [° fg(cW)wi(ze)dw
[ (= )'Yi( )
ay(x) = )\7,
=0 =2

Choose normalization, (¥ (x)|¥(z')) = 6(z — 2'), v+ =1,
Wa@) = |o)+ AL ) +A/O°o AT

nE(x) T —wtie




DISCRETE STATE SOLUTION

Eigenvalue = ¢ (0, 400)

(wo — x)a(x) + )\/Ooo fH(w)y(z,w)dw =0,
(w—2)Y(z,w) + Af(w)a(z) =0.

(z,w) = _da(@)f(w) :

w—T

a(r) ((wo —x) = A [° de) = a(z)n(z) = 0.

w—x

For a(x) to be nonzero, n(x) has to vanish at z.

» The zero point of n(x) corresponds to eigenvalues of the full
Hamiltonian — discrete states.



DISCRETE SPECTRUM

Analytic continuation of 74 (x)

,'7[( ) )\2/ f —
' (2) = ' (2) = 2inG(2), G(2) = Nf(2)f*(2)

» There is a unitarity cut on (0,00). 7 is continued to two a
sheeted Riemann surface.

» 1n(z) real-analytic, n*(xz) = n(z*), G(z) anti-real-analytic,
G*(z) = —G(x*).



DISCRETE STATE SOLUTIONS

nl(a:):x—wo—)\Q/oodew:O

0 r — W

n'(x) =n'(2) = 2inG(2), G=Nf(x)f*(x)

» Bound states: solutions on the first sheet real axis below the

threshold. .
If wy < A2 Ie de , there could be a bound state.

126) = N (I1) + A/DOO M]w)dw)

Zp — W

where N = (1/(zp)) /2 = (1 + )\2fdw7(|zj;(fz§2)_1/2, such
that (zp|zp) = 1.



DISCRETE STATE SOLUTIONS

» Resonant states: wy > threshold, A pair of solutions zg, 2%,
on the second sheet complex plane. H|zgr) = zg|2R)

) = Na(J0y 3 [ o T ),
i = Va1 [ aw L),
T
"




DISCRETE STATE SOLUTIONS

Resonant states:

» Normalization: (zg|zr) = 0, naive argument, 2}, # zg,

(zr|H|2R) = 2r(2g|2R) = ZR(2R|2R) = 0
|zr) is not in the Hilbert space — need rigged Hilbert space

description.

> Left eigenstates:(2z|H = (3g|2g

Gul = (113 [ "o T ),

(21l = Np(al+ )\/OOO dw[f(w)]_(w).

*_
ZR w

Np is a complex normalization parameter,

2
Ng = (1" (2r)) "% = (14 A2 falcu%)_l/2 such that
(Zrl2r) =1



DISCRETE STATE SOLUTIONS

» Virtual states: Solutions on the second sheet real axis below
the threshold.

= (s [ M@dw), (=2 = 3,

where S

N T A At -1/2 _ 2 1/2
Ny =N = (1" (20)) 14+ X [do=p)
such that (ZF|zF) = 1.




AN EXAMPLE FORM FACTOR
Choose an example form factor: |f(w)|? = ﬁ\/iz, p>0

() n A2 n A2
W) =w — w —— =Ww—w —_—.
K 0 V—w+p 0 —iw+p
2
I TA
W) =w-—wyg+ —F——,

2
Case 1: wg > %, turn on X slowly
» Three solutions

A2
i =wo = —— 55 + O,
P F g
2pm A2
by =— 2 4 )\4 = _p? )\4
s=—p +4yp+OX) p+wO+p2+0( )

» F2: resonance poles. A — 0, they move the discrete bare
state.

» Fj3 virtual state: when A — 0, it approaches p?, the pole of
the form factor. At A = 0, it disappears.



» Resonance poles:

1) = Na(I1) + A/OOO dw[f(w)hlw)),

Fi—w
B = Na(1 1 [ dwww),

In the A — 0 limit , |Eq2) — |1).
» Virtual state:

|EE) = Nv(m + A/OOO [Ej(_wgd]i

At A =0, it dissappears n(z) = z — wyp, no such solution. For
A # 0, it appears,near the pole of the form factor. In the limit
of A =0, |E3) 4 |1).

W g(w) o2 6(z)
A/o G P Pz —als @ = A i TOW

eI/ p1/2 (e~ p2)
()72

]w)dw),

+0(\) ~ 0\

~271



Case 2. 0 < wg < %.
1. wo = 3p°,
There is a triple pole for wy = 3(73\*)1/3

8 = [T I ga), @ =,

v _w]i
) = Nah [ e, (31— 3,

+y e f(w) Wdw sE = (s
’Zv3> _Nv3/\/0 ([Zv_w]i)3| >d ’ < v3 < z:E’) :

Normalization: (23:3|zvi> =1 and <E£\Z$> =L
Then Ny = Ny, = Ny3 = (6/77”/)1/2-

1.0F
d 2
Second Sheet First Sheet, A2=PYWo p Wo

\ L L L L L L L
-2 1 L —T1 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05
=
b -0.5F
A2=PWo

-1.0p




2. wy < 3p%,

There could be double poles.

Normalization: (Z 1)2|z
Then N =N, =

Second Sheet

>:
/77) ndN;r:N;;:NU’*.

R (R e

5 = Nt | (o — w2

v_w]:l:

f(w)

\w>dw),

5|

(5= (2
(=

First Sheet, 7\22%

1.0+

0.5F

L —1 0.35

0.30

0.25

0.20

0.10

0.05

-0.5F

-1.0F




1
3. wo > gp2,

1.0
Second sheet 2 First Sheet, A2sPWo
Tomn
Wo 0.5
a=PWo b
1
\ e
-1.0 -0.5 0‘.5 1.0 -0.7 -0.6 -0.5 -0.4° -0.3 -0.2 -0.1
-
b
0.5
o




Case 3. wy < 0, always a bound-state pole on the first sheet. A
virtual state generated from the formfactor, and a virtual state
generated from the discrete bare state.

o) 2
ZO:WOJFAz/ LG
0

zZ0 — W

Second Sheet 0.4f
T 2r First Sheet
0.2F

-0.2¢

-0.41




EXISTENCE OF THE VIRTUAL STATES

» Virtual states from the singularity of the form factor,
analytically continued G(w) = |f(w)]*:

o) 2
77] :Z—UJO—)\2/ ‘f(CU)’ dw
0

Z—Ww

' (w) =n! () + 2miN2 G (W) = ! (w) — 2X%7i G(w),

%)

» Virtual state generated from the bare states: wy < 0



VIRTUAL STATE: ANOTHER EXAMPLE
Form factor: G(w) = y/we™
() =nl(w) — 2mi A2 G(w)

=w — wg + )\2/ dx G(z) + 222/ —we Y.
0

Ui

(z —w)




COMPLETENESS RELATION

> In general, the resonance state and the virtual states do not
enter the completeness relation. If there is only continuum
eigenstates:

1= [ el @) )l
With one bound state |Ep) eigenstate:

1=[Ea)(Esl + | dul ¥ () (¥ )]



COMPLETENESS RELATION

To treat the resonances and virtual states the same as the bound
state and Continuum state:

» Petrosky, Prigogine, Tasaki: in solving the large Poincaré
problem, propose a definition of continuum state.
|¥, (z)) as a distribution, includes the integral contour

information
1 1 z—@ +iy

ng (@) 0t (@) o=@ +inly

_ /(=) = fw)
() =lo) + 305 10+ 3 aw L8]




COMPLETENESS RELATION

» The left state is not modified:

(B (2)] =(z] + AL [<1\ + A/Ooo dwﬂw} .

n¥(x) T —wFie

» Using these continuum states, the completeness relation reads,

1= [ Aol @) (04 )] + o) Gl

The resonant state enter the completeness relation.



COMPLETENESS RELATION: HIGHER-ORDER POLE
When there is an nth-order pole, n degenerate states:

12D :N(\1>+)\/OOO J() ]w)dw),

[z — w4+
(0] :N<<1] + A/OOO [zf—(z)p <w\dw> :

£

2y =N(=1)"! - wif( w rn
|2y =N(-1) )\/0 d =l —|w), forn>2,
)| = n=1 - wif(w) w rn
EO =N [T o T gl forn 2,

€

£,

w)|? 12
N = (77(73!(2'))1/2 — ( n—1X% fd If |n+1> is chosen

such that (2(")|z(n— T+1)> = 1. the completeness relation can also
be deduced

1:/ d| 4 (w H—Z]z ()|,
0



COUPLED CHANNEL FRIEDRICHS MODEL

Hamiltonian: H = Hy +V

e}

H = wg|1><1]+/oodww|w>11<w]+/ dww|w) 22 (w|

al a2

Y / " dwlfi @)W (1] + £ @)1 1w

al

s [ dalfa@)e)a] + @) el

az

Solution:
Continuous states,

W) = o)+ 2D [0+ Ty [ ae )],

j=1,2 aj

where 0% (2) = 2 — wo — A2 [°° GLL)_q, N2 [ _Gal) g,

a1 r—wtie as r—wtie

Orthonormal condition: (¥;(z")|¥;(x)) = 5z]5(:z: — ).




Discrete states are determined by 1(z) = 0, analytically continued
to different Riemann sheets.

77(3:):x—wo—A%/(:ogmdw—/\%/a:omdw
i I
A L
m v
L N

a

a




POLE POSITION FOR SMALL COUPLING

Example form factor:G(w) = Vw"fgl and Ga(w) = 725:52

» States from the poles of the form factor:
near G1(z) poles, Virtual states on the II and I1I sheet.
near Go(z) poles, Virtual states on the II1 and IV sheet.

» States generated from the bare states, wy < a1:
Bound states on I, and virtual states on I1, I1I, IV sheets.




States generated from the bare discrete states
> a; <wg < ag:
Turn on A first, then turnon \q, I — I, II; II — 111, 1V
Bound state — I sheet resonances.
Virtual state — IV sheet resonances.
Turn on Ay first, then turnon o, I — 1,1V, II — II, I11I:
11 sheet resonance — II, 111 sheet resonances.



States generated from the bare discrete states
> as < wp: Turn on Ao first, then turnon \q, I — I, 11;
11 = 111,1V:
Resonance — II1,1V sheet resonances.
Turn on Aq first, then turnon Ao, I — I, IV; II — I1,111I:
11 sheet resonance — II, 111 sheet resonances.



WAVE FUNCTION

|Zé> :NI<|1> —|—)\1/ dw '}il(w3J|w>1 + A2 /Oo deCQ(_Ld2J|w>2) s
az 0

4 =N (1) + 00 [ "o s [ 0w B ),

ai [0_ 20

oo f oo
|21 :NIH<|1> + X\ /a1 dcu[ZéHl(j)i}]+ lw)1 + Ao /a2 dw[zéf?(fzuh |w>2) ,
|28V :NIV(|1> + )\1/ dwz({‘l/(w)w|w)1 + )\2/(1 dw[zéj‘?%F@g) ,

ai




COMPLETENESS RELATION

Continuous state:

A ) * o F@)
e = oo+ 2 i+ 30 [ ]

(2) =12 y T —w e
= Aifi() > [ (w)
(Fis(0)] = (o] + 250 [<1|+321;2Aj/a] dw L ]
Y w2/
mw=re I I
J=II,I11,IV i=1 g

Z/ dx W) (i) + S s L = 1
Jyi

i=1,2



Summary:

» Friedrichs model in single channel and coupled channel:
exactly solvable model.

» Wave function for bound state, virtual state, and Resonances.
» Dynamically generated poles and generated from bare states.
» Completeness relation.

» Probability explanation?
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