BOUND STATES, VIRTUAL STATES, RESONANCES IN THE FRIEDRICHS MODEL

Zhiguang Xiao Collaborators: Zhou Zhi-yong

October 29, 2016

MOTIVATION

SINGLE CHANNEL FRIEDRICHS MODEL

Friedrichs model and solutions An example form factor Existence of the virtual states Completeness relation

COUPLED CHANNEL FRIEDRICHS MODEL

Solution Pole positions for small coupling Completeness relation

SUMMARY

In phenomenology study:

Couple a bare state with a continuum: dispersive method

- Wave function?
- Probability?

The simplest Friedrichs model

• The system couples one bare state $|1\rangle$ and a continuum state $|\omega\rangle$, which are eigenstates of the free Hamiltonian

$$H_0|1\rangle = \omega_0|1\rangle, \qquad H_0|\omega\rangle = \omega|\omega\rangle.$$

• Orthonormal condition: $\langle 1|1\rangle = 1$, $\langle 1|\omega\rangle = 0$, and $\langle \omega|\omega'\rangle = \delta(\omega - \omega')$ Completeness: $|1\rangle\langle 1| + \int_0^\infty d\omega |\omega\rangle\langle \omega| = 1$

The free Hamiltonian can be expressed as:

$$H_{0} = \omega_{0} |1\rangle \langle 1| + \int_{0}^{\infty} \omega |\omega\rangle \langle \omega | \mathrm{d}\omega$$

• Interaction: $\langle \omega | V | 1 \rangle = \lambda f(\omega)$, $\langle \omega' | V | \omega \rangle = \langle 1 | V | 1 \rangle = 0$.

$$V = \lambda \int_0^\infty [f(\omega)|\omega\rangle \langle 1| + f^*(\omega)|1\rangle \langle \omega|] \mathrm{d}\omega$$

Solution of energy eigenfunction

Eigenvalue equation:

$$H|\Psi(x)\rangle = (H_0 + V)|\Psi\rangle = x|\Psi(x)\rangle.$$

Solution can be expanded as

$$|\Psi(x)\rangle = \alpha(x)|1\rangle + \int_0^\infty \psi(x,\omega)|\omega\rangle \mathrm{d}\omega.$$

 \blacktriangleright Using $V|1\rangle=\lambda f(\omega)|\omega\rangle$, $V|\omega\rangle=\lambda f^*(\omega)|1\rangle$, we have

$$(\omega_0 - x)\alpha(x) + \lambda \int_0^\infty f^*(\omega)\psi(x,\omega)d\omega = 0,$$

$$(\omega - x)\psi(x,\omega) + \lambda f(\omega)\alpha(x) = 0.$$

CONTINUUM STATE SOLUTION

$$(\omega_0 - x)\alpha(x) + \lambda \int_0^\infty f^*(\omega)\psi(x,\omega)d\omega = 0,$$

$$(\omega - x)\psi(x,\omega) + \lambda f(\omega)\alpha(x) = 0.$$

Eigenvalue x > 0, real

$$\psi_{\pm}(x,\omega) = -\frac{\lambda\alpha(x)f(\omega)}{\omega - x \pm i\epsilon} + \gamma_{\pm}(\omega)\delta(\omega - x),$$

$$(\omega_0 - x)\alpha_{\pm}(x) + \lambda f^*(x)\gamma_{\pm}(x) - \alpha_{\pm}(x)\lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{\omega - x \pm i\epsilon} d\omega = 0.$$

Solution: define $\eta^{\pm}(x) = x - \omega_0 - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{x - \omega \pm i\epsilon} d\omega$

$$\alpha_{\pm}(x) = \lambda \frac{f^*(x)\gamma_{\pm}(x)}{\eta^{\pm}(x)}.$$

Choose normalization, $\langle \Psi(x)|\Psi(x')\rangle=\delta(x-x'),~\gamma_{\pm}=1$,

$$|\Psi_{\pm}(x)\rangle = |x\rangle + \lambda \frac{f^{*}(x)}{\eta^{\pm}(x)} \Big[|1\rangle + \lambda \int_{0}^{\infty} \frac{f(\omega)}{x - \omega \pm i\epsilon} |\omega\rangle \mathrm{d}\omega\Big]$$

Eigenvalue $x \notin (0, +\infty)$

$$(\omega_0 - x)\alpha(x) + \lambda \int_0^\infty f^*(\omega)\psi(x,\omega)d\omega = 0,$$

$$(\omega - x)\psi(x,\omega) + \lambda f(\omega)\alpha(x) = 0.$$

$$\psi(x,\omega) = -\frac{\lambda\alpha(x)f(\omega)}{\omega - x},$$

$$\alpha(x) \left((\omega_0 - x) - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{\omega - x} d\omega \right) = \alpha(x)\eta(x) = 0.$$

For $\alpha(x)$ to be nonzero, $\eta(x)$ has to vanish at x.

 The zero point of η(x) corresponds to eigenvalues of the full Hamiltonian — discrete states.

DISCRETE SPECTRUM

Analytic continuation of $\eta_{\pm}(x)$

$$\eta^{I}(z) = z - \omega_{0} - \lambda^{2} \int_{0}^{\infty} \frac{f(\omega)f^{*}(\omega)}{z - \omega} d\omega$$
$$\eta^{II}(z) = \eta^{I}(z) - 2i\pi G(z), \quad G(z) \equiv \lambda^{2}f(z)f^{*}(z)$$

- There is a unitarity cut on (0,∞). η is continued to two a sheeted Riemann surface.
- ▶ $\eta(x)$ real-analytic, $\eta^*(x) = \eta(x^*)$, G(x) anti-real-analytic, $G^*(x) = -G(x^*)$.

$$\eta^{I}(x) = x - \omega_0 - \lambda^2 \int_0^\infty \frac{f(\omega)f^*(\omega)}{x - \omega} d\omega = 0$$

$$\eta^{II}(x) = \eta^{I}(z) - 2i\pi G(z), \quad G \equiv \lambda^2 f(x)f^*(x)$$

Bound states: solutions on the first sheet real axis below the threshold.

If $\omega_0 < \lambda^2 \int_0^\infty \frac{f(\omega) f^*(\omega)}{\omega} \mathrm{d}\omega$, there could be a bound state.

$$|z_B\rangle = N_B \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{z_B - \omega} |\omega\rangle \mathrm{d}\omega\Big)$$

where $N_B = (\eta'(z_B))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{(z_B - \omega)^2})^{-1/2}$, such that $\langle z_B | z_B \rangle = 1$.

▶ Resonant states: ω_0 > threshold, A pair of solutions z_R , z_R^* , on the second sheet complex plane. $\hat{H}|z_R\rangle = z_R|z_R\rangle$

$$\begin{split} |z_R\rangle &= N_R \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R - \omega]_+} |\omega\rangle \Big), \\ |z_R^*\rangle &= N_R^* \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R^* - \omega]_-} |\omega\rangle \Big), \end{split}$$

Resonant states:

▶ Normalization: $\langle z_R | z_R \rangle = 0$, naïve argument, $z_R^* \neq z_R$,

$$\langle z_R | \hat{H} | z_R \rangle = z_R \langle z_R | z_R \rangle = z_R^* \langle z_R | z_R \rangle = 0$$

 $|z_R\rangle$ is not in the Hilbert space — need rigged Hilbert space description.

• Left eigenstates: $\langle \tilde{z}_R | \hat{H} = \langle \tilde{z}_R | z_R$

$$\begin{split} &\langle \tilde{z}_R| = N_R \Big(\langle 1| + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R - \omega]_+} \langle \omega| \Big), \\ &\langle \tilde{z}_R^*| = N_R^* \Big(\langle 1| + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[z_R^* - \omega]_-} \langle \omega| \Big). \end{split}$$

 N_R is a complex normalization parameter, $N_R = (\eta'^+(z_R))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{[(z_R - \omega)_+]^2})^{-1/2}$ such that $\langle \tilde{z}_R | z_R \rangle = 1$

 Virtual states: Solutions on the second sheet real axis below the threshold.

$$|z_v^{\pm}\rangle = N_v^{\pm} \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[z_v - \omega]_{\pm}} |\omega\rangle \mathrm{d}\omega \Big), \quad \langle \tilde{z}_v^{\pm}| = \langle z_v^{\mp}|,$$

where

$$\begin{split} N_v^- &= N_v^{+*} = (\eta'^+(z_v))^{-1/2} = (1 + \lambda^2 \int d\omega \frac{|f(\omega)|^2}{[(z_v - \omega)_+]^2})^{-1/2},\\ \text{such that } \langle \tilde{z}_v^\pm | z_v^\pm \rangle = 1. \end{split}$$

AN EXAMPLE FORM FACTOR

Choose an example form factor: $|f(\omega)|^2 = \frac{\sqrt{\omega}}{\omega + \rho^2}$, $\rho > 0$

$$\eta(\omega) = \omega - \omega_0 + \frac{\pi \lambda^2}{\sqrt{-\omega} + \rho} = \omega - \omega_0 + \frac{\pi \lambda^2}{-i\sqrt{\omega} + \rho}$$
$$\eta^{II}(\omega) = \omega - \omega_0 + \frac{\pi \lambda^2}{-\sqrt{-\omega} + \rho},$$

Case 1: $\omega_0 > \frac{\pi \lambda^2}{\rho}$, turn on λ slowly Three solutions

$$E_{1,2} = \omega_0 - \frac{\pi \lambda^2}{\rho \mp i \omega_0^{1/2}} + O(\lambda^4) ,$$

$$E_3 = -\rho^2 + 4\gamma \rho + O(\lambda^4) = -\rho^2 + \frac{2\rho \pi \lambda^2}{\omega_0 + \rho^2} + O(\lambda^4)$$

- ► E_{1,2}: resonance poles. λ → 0, they move the discrete bare state.
- E₃ virtual state: when λ → 0, it approaches ρ², the pole of the form factor. At λ = 0, it disappears.

Resonance poles:

$$|E_1\rangle = N_R \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[E_1 - \omega]_+} |\omega\rangle\Big),$$

$$|E_2\rangle = N_R^* \Big(|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{[E_2 - \omega]_-} |\omega\rangle\Big),$$

In the $\lambda \to 0$ limit , $|E_{1,2}\rangle \to |1\rangle.$

Virtual state:

$$|E_3^{\pm}\rangle = N_v \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[E_3 - \omega]_{\pm}} |\omega\rangle \mathrm{d}\omega\Big),$$

At $\lambda = 0$, it dissappears $\eta(z) = z - \omega_0$, no such solution. For $\lambda \neq 0$, it appears,near the pole of the form factor. In the limit of $\lambda \to 0$, $|E_3\rangle \not \to |1\rangle$.

$$\lambda \int_0^\infty \frac{\omega^{1/4} \phi(\omega)}{(\omega + \rho^2)^{1/2} [z_v - \omega]_+} d\omega = 2\pi i \lambda \frac{z_v^{1/4} \phi(z_v)}{(z_v + \rho^2)^{1/2}} + O(\lambda)$$
$$\sim 2\pi i \frac{e^{-i\pi/4} \rho^{1/2} \phi(e^{-i\pi} \rho^2)}{(-a)^{1/2}} + O(\lambda) \sim \mathcal{O}(\lambda^0)$$

Case 2.
$$0 < \omega_0 < \frac{\pi \lambda^2}{\rho}$$
.
1. $\omega_0 = \frac{1}{3}\rho^2$,
There is a triple pole for $\omega_0 = \frac{3}{4}(\pi^3 \lambda^4)^{1/3}$

$$\begin{aligned} |z_v^{\pm}\rangle &= N_v^{\pm} \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[z_v - \omega]_{\pm}} |\omega\rangle \mathrm{d}\omega\Big), \quad \langle \tilde{z}_v^{\pm}| = \langle z_v^{\mp}|, \\ |z_{v2}^{\pm}\rangle &= -N_{v2}\lambda \int_0^\infty \frac{f(\omega)}{([z_v - \omega]_{\pm})^2} |\omega\rangle \mathrm{d}\omega, \quad \langle \tilde{z}_{v2}^{\pm}| = \langle z_{v2}^{\mp}|, \\ |z_{v3}^{\pm}\rangle &= N_{v3}\lambda \int_0^\infty \frac{f(\omega)}{([z_v - \omega]_{\pm})^3} |\omega\rangle \mathrm{d}\omega, \quad \langle \tilde{z}_{v3}^{\pm}| = \langle z_{v3}^{\mp}|. \end{aligned}$$

 $\begin{array}{l} \mbox{Normalization: } \langle \tilde{z}_{v3}^{\pm}|z_v^{\pm}\rangle = 1 \mbox{ and } \langle \tilde{z}_{v2}^{\pm}|z_{v2}^{\pm}\rangle = 1. \\ \mbox{Then } N_v = N_{v2} = N_{v3} = (6/\eta^{\prime\prime\prime})^{1/2}. \end{array}$

2. $\omega_0 < \frac{1}{3}\rho^2$, There could be double poles.

$$\begin{aligned} |z_v^{\pm}\rangle &= N_v^{\pm} \Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[z_v - \omega]_{\pm}} |\omega\rangle \mathrm{d}\omega\Big), \quad \langle \tilde{z}_v^{\pm}| = \langle z_v^{\mp}|, \\ |z_{v2}^{\pm}\rangle &= -N_{v2}\lambda \int_0^\infty \frac{f(\omega)}{([z_v - \omega]_{\pm})^2} |\omega\rangle \mathrm{d}\omega, \quad \langle \tilde{z}_{v2}^{\pm}| = \langle z_{v2}^{\mp}|, \end{aligned}$$

Normalization:
$$\langle \tilde{z}_{v2}^{\pm} | z_v^{\pm} \rangle = 1$$
.
Then $N_v^- = N_{v2}^- = (2/\eta'')^{1/2}$ and $N_v^+ = N_{v2}^+ = N_v^{-*}$

Case 3. $\omega_0 < 0$, always a bound-state pole on the first sheet. A virtual state generated from the formfactor, and a virtual state generated from the discrete bare state.

$$z_0 = \omega_0 + \lambda^2 \int_0^\infty \frac{|f(\omega)|^2}{z_0 - \omega} \mathrm{d}\omega$$

EXISTENCE OF THE VIRTUAL STATES

► Virtual states from the singularity of the form factor, analytically continued G(ω) = |f(ω)|²:

$$\eta^{I} = z - \omega_{0} - \lambda^{2} \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{z - \omega} d\omega$$
$$\eta^{II}(\omega) = \eta^{I}(\omega) + 2\pi i \lambda^{2} G^{II}(\omega) = \eta^{I}(\omega) - 2\lambda^{2} \pi i G(\omega),$$

 \blacktriangleright Virtual state generated from the bare states: $\omega_0 < 0$

VIRTUAL STATE: ANOTHER EXAMPLE

In general, the resonance state and the virtual states do not enter the completeness relation. If there is only continuum eigenstates:

$$\mathbf{1} = \int_0^\infty d\omega |\Psi_+(\omega)\rangle \langle \Psi_+(\omega)|.$$

With one bound state $|E_B\rangle$ eigenstate:

$$\mathbf{1} = |E_B\rangle\langle E_B| + \int_0^\infty d\omega |\Psi_+(\omega)\rangle\langle \Psi_+(\omega)|.$$

To treat the resonances and virtual states the same as the bound state and Continuum state:

▶ Petrosky, Prigogine, Tasaki: in solving the large Poincaré problem, propose a definition of continuum state. $|\Psi_+(x)\rangle$ as a distribution, includes the integral contour information

$$\begin{split} \frac{1}{\eta_d^+(x)} &\equiv & \frac{1}{\eta^+(x)} \frac{x - \tilde{\omega}_1 + i\gamma}{[x - \tilde{\omega}_1 + i\gamma]_+}, \\ |\Psi_{\pm}(x)\rangle = & |x\rangle + \lambda \frac{f(x)}{\eta_d^{\pm}(x)} \Big[|1\rangle + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{x - \omega \pm i\epsilon} |\omega\rangle \Big] \,. \end{split}$$

The left state is not modified:

$$\langle \tilde{\Psi}_{\pm}(x) | = \langle x | + \lambda \frac{f(x)}{\eta^{\mp}(x)} \Big[\langle 1 | + \lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{x - \omega \mp i\epsilon} \langle \omega | \Big] \,.$$

Using these continuum states, the completeness relation reads,

$$\mathbf{1} = \int_0^\infty d\omega |\Psi_+(\omega)\rangle \langle \tilde{\Psi}_+(\omega)| + |z_R\rangle \langle \tilde{z}_R|.$$

The resonant state enter the completeness relation.

Completeness relation: higher-order pole

When there is an nth-order pole, n degenerate states:

$$\begin{split} |z^{(1)}\rangle = & N\Big(|1\rangle + \lambda \int_0^\infty \frac{f(\omega)}{[z-\omega]_+} |\omega\rangle \mathrm{d}\omega\Big)\,,\\ \langle \tilde{z}^{(1)}| = & N\Big(\langle 1| + \lambda \int_0^\infty \frac{f(\omega)}{[z-\omega]_+} \langle \omega| \mathrm{d}\omega\Big)\,,\\ |z^{(n)}\rangle = & N(-1)^{n-1}\lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{([z-\omega]_+)^n} |\omega\rangle\,, \quad \text{for } n \ge 2\,,\\ \langle \tilde{z}^{(n)}| = & N(-1)^{n-1}\lambda \int_0^\infty \mathrm{d}\omega \frac{f(\omega)}{([z-\omega]_+)^n} \langle \omega|\,, \quad \text{for } n \ge 2\,, \end{split}$$

 $N = (\frac{n!}{\eta^{(n)}(z)})^{1/2} = \left((-)^{n-1}\frac{\lambda^2}{n!}\int d\omega \frac{|f(\omega)|^2}{([z-\omega]_+)^{n+1}}\right)^{-1/2}$ is chosen such that $\langle \tilde{z}^{(r)}|z^{(n-r+1)}\rangle = 1$. the completeness relation can also be deduced

$$\mathbf{1} = \int_0^\infty d\omega |\Psi_+(\omega)\rangle \langle \tilde{\Psi}_+(\omega)| + \sum_{r=1}^n |z^{(r)}\rangle \langle \tilde{z}^{(n-r+1)}|.$$

COUPLED CHANNEL FRIEDRICHS MODEL

Hamiltonian: $H = H_0 + V$

$$H = \omega_{0}|1\rangle\langle 1| + \int_{a_{1}}^{\infty} d\omega\omega|\omega\rangle_{11}\langle\omega| + \int_{a_{2}}^{\infty} d\omega\omega|\omega\rangle_{22}\langle\omega|$$

+ $\lambda_{1}\int_{a_{1}}^{\infty} d\omega[f_{1}(\omega)|\omega\rangle_{1}\langle 1| + f_{1}^{*}(\omega)|1\rangle_{-1}\langle\omega|]$
+ $\lambda_{2}\int_{a_{2}}^{\infty} d\omega[f_{2}(\omega)|\omega\rangle_{2}\langle 1| + f_{2}^{*}(\omega)|1\rangle_{-2}\langle\omega|]$

Solution: Continuous states,

$$|\Psi_{i\pm}(x)\rangle = |x\rangle_i + \frac{\lambda_i f_i^*(x)}{\eta^{\pm}(x)} \Big[|1\rangle + \sum_{j=1,2} \lambda_j \int_{a_j}^{\infty} \mathrm{d}\omega \frac{f_j(\omega)}{x - \omega \pm i\epsilon} |\omega\rangle_j \Big].$$

where $\eta^{\pm}(x) = x - \omega_0 - \lambda_1^2 \int_{a_1}^{\infty} \frac{G_1(\omega)}{x - \omega \pm i\epsilon} d\omega - \lambda_2^2 \int_{a_2}^{\infty} \frac{G_2(\omega)}{x - \omega \pm i\epsilon} d\omega$. Orthonormal condition: $\langle \Psi_i(x') | \Psi_j(x) \rangle = \delta_{ij} \delta(x' - x)$. Discrete states are determined by $\eta(z) = 0$, analytically continued to different Riemann sheets.

$$\eta(x) = x - \omega_0 - \lambda_1^2 \int_{a_1}^{\infty} \frac{G_1(\omega)}{x - \omega \pm i\epsilon} d\omega - \lambda_2^2 \int_{a_2}^{\infty} \frac{G_2(\omega)}{x - \omega \pm i\epsilon} d\omega.$$

Pole position for small coupling

Example form factor: $G_1(\omega) = \frac{\sqrt{\omega - a_1}}{\omega + \zeta_1}$ and $G_2(\omega) = \frac{\sqrt{\omega - a_2}}{\omega + \zeta_2}$

- States from the poles of the form factor: near G₁(x) poles, Virtual states on the II and III sheet. near G₂(x) poles, Virtual states on the III and IV sheet.
- States generated from the bare states, ω₀ < a₁: Bound states on *I*, and virtual states on *II*, *III*, *IV* sheets.

States generated from the bare discrete states

► $a_1 < \omega_0 < a_2$:

Turn on λ_2 first, then turn on λ_1 , $I \rightarrow I$, II; $II \rightarrow III$, IV: Bound state $\rightarrow II$ sheet resonances.

Virtual state $\rightarrow IV$ sheet resonances.

Turn on λ_1 first, then turn on λ_2 , $I \to I, IV$; $II \to II, III$:

II sheet resonance \rightarrow II, III sheet resonances.

States generated from the bare discrete states

- ▶ $a_2 < \omega_0$: Turn on λ_2 first, then turn on λ_1 , $I \to I, II$; $II \to III, IV$: Resonance $\to III, IV$ sheet resonances. Turn on λ_1 first, then turn on λ_2 , $I \to I, IV$; $II \to II, III$:
 - II sheet resonance $\rightarrow II$, III sheet resonances.

WAVE FUNCTION

Continuous state:

$$\begin{split} |\Psi_{i\pm}^{d}(x)\rangle &= |x\rangle_{i} + \frac{\lambda_{i}f_{i}^{*}(x)}{\eta_{d}^{\pm}(x)} \Big[|1\rangle + \sum_{j=1,2} \lambda_{j} \int_{a_{j}}^{\infty} \mathrm{d}\omega \frac{f_{j}(\omega)}{x - \omega \pm i\epsilon} |\omega\rangle_{j} \Big] \\ \langle \tilde{\Psi}_{i\pm}(x)| &= {}_{i}\langle x| + \frac{\lambda_{i}f_{i}(x)}{\eta^{\mp}(x)} \Big[\langle 1| + \sum_{j=1,2} \lambda_{j} \int_{a_{j}}^{\infty} \mathrm{d}\omega \frac{f_{j}^{*}(\omega)}{x - \omega \mp i\epsilon} {}_{j}\langle \omega| \Big] \end{split}$$

$$\eta_d^{\pm}(\omega) \equiv \eta^{\pm}(\omega) \prod_{J=II,III,IV} \prod_{i=1}^{N_J} \frac{\omega - z_i^J}{[\omega - z_i^J]_{\pm}} \,.$$

$$\sum_{i=1,2}\int_{a_i}^{\infty}dx|\Psi_i^d(x)\rangle\langle\tilde{\Psi}_i(x)|+\sum_{J,i}|z_{0,i}^J\rangle\langle\tilde{z}_{0,i}^J|=\mathbf{1}$$

Summary:

- Friedrichs model in single channel and coupled channel: exactly solvable model.
- ► Wave function for bound state, virtual state, and Resonances.
- Dynamically generated poles and generated from bare states.
- Completeness relation.
- Probability explanation?