

Benchmarks for detector optimization

6 benchmark analyses for MOST

- Higgs mass/Xsec measurement with Z->II, H->inclusive
 - Physics importance weight (PIW): 30%
 - Performance: PID (Calo) & Tracking
 - Requirement on Systematic error
- Br(H->ZZ) via ZH->ZZZ*->llvvqq or Br(H->WW) via Z->ll & H->WW*->lvqq
 - PIW: 25%,
 - Key to Higgs total width
 - Object reconstruction in complex environments: JER, LEPTON & MET
- Br(H->bb, cc, gg): *divergence from ILC extrapolation: need more careful study*
 - PIW: 20%, access to g(Hcc)
 - Performance:
 - Z->qq: Jet Clustering & Flavor tagging, 8%
 - vv + H->bb, cc, gg : Flavor tagging, key to Higgs width, 8%
 - Z->II: Flavor tagging, 4%

Benchmark Physics Processes

- Br(H->exo)
 - PIW: 10%
 - H->inv: 5%, require JER.
 - H->leptonic: 5%
- Br(H->di photon)
 - PIW: 5%
 - Performance:
 - Materials budget (photon converting rate & recovery)
 - ECAL intrinsic resolution, which, strongly correlate with JER
- One Z/W measurement: for example $A_{FB}(b)$, $sin^{2}(\theta_{W})$, PIW = 10%
- Personal Perspective: Comment & Suggestions?...

Non-benchmark Higgs Processes

- Higgs:
 - Xsec measurement via Z->qq, H->inc. PIW = 25%
 - Very complex analysis. Not covered due to manpower & expertise
 - H->tautau: PI = 15%
 - II, vv + tautau: covered, PI = 7%
 - Z -> qq: ongoing analysis, 8%
 - Goal: to flag every tau decay final states, need further study
 - Remark:
 - An excellent test bed for particle separations//PFA.
 - Key to tau-related physics measurements (bkg...).
 - Br(H->WW, ZZ) via non Benchmarks: PI = 10%
 - Covered: 5% (Br(H->WW/ZZ) via Z->II, H->WW/ZZ->4q)
 - Non covered: 5%
 - Br(H->mumu): PI = 5%, covered
 - Br(H->exotic): with Jets in final states, PI = 5%, partially covered

Physics analysis

	Physics importance	Coverage at cepc_v1	Consumed Manpower/Ph.D U	Future demands /Ph.D U
MOST Benchmarks	F Benchmarks100%		5.0	7.0
Higgs_non benchmark	60%	20%	1.0	6.0
Higgs_differential	20%			2.0
E/W	50%	10%		4.0
Flavor	20%	5%		2.0
Else (top, 750,)	20 - 40%			2.0 - 3.0

- Remarks:
 - A Ph.D Unit: analysis work for 1 Ph.D 50% of his/her thesis
 - Yu Dan, Analysis: Br(H->tautau), Service: Reconstruction (PID) + TB analysis
 - Manpower: Analysis at cepc_v1 = analysis for further iterations
 - PIW != Efforts Needed.
 - EW/Flavor needs extra manpower from experienced Staffs...
 - Data driven analysis and combination requires at least 3 Ph.D U

Saturation

On Silicon...

Photon Energy Spectrum at 1, 3, 5, 10, 30, 50, 100, 250 GeV, Cell Size = 10 mm, W thickness = 1.4 mm

L 1sigma value = 0.87x - 0.24yy + 0.97y - 0.43z + 0.82x = log10(energy) y = log10(cell size) z = log10(angle)

Saturation = 2 * L_1sigma

eg, 175 GeV photon at 20mm ECAL cell size: 2500 MIP

On Scintillator...

photon, Cell Size 5x5mm (W:3,Air:0.5,Scintillator:2,Air:0.5,PCB:2,Air:0.5)*50

Rate & Occupancy

Physics event rate at Z pole ~ 2 orders of magnitude higher than Higgs runs (assume same luminosity)

- Should be studied on Z->qq, Bhabha & Irradiation samples
- Z pole Luminosity ~ Higgs Run:
 - 250 fb⁻¹/year*IP (2E34)
 - 1.25E7 sec/year
 - 1E10/IP Z event year;
 - z->qq: ~500 Hz/IP
- Test on 5k Z->qq events

Zqq

TMath::ATan2(HitX,HitY):HitZ {Seg==0&&K==5}

EcalBarrel

EcalEndcapRing

	Longitudinal Max	Max Rate (Hz) @ Longitudinal Max	Average occupancy @ Longitudinal Max
ECAL Barrel	5	6	0.2
ECAL Endcap	5	5	0.21
ECAL Endcap Ring	1	4	0.3
HCAL Barrel	0	4	0.015
HCAL Endcap	0	4	0.03
HCAL Endcap Ring	0	2	-
LumiCal	0	8	-

Average occupancy = Nhit/Total Cells

HitX:HitY

Hit Map at 5k zqq event

Time resolution required for pi-K separation

Fast calculation

- For a straight line:
 - $\Delta t = 0.5^* L/c^* (\gamma_1^{-2} \gamma_2^{-2}) = 0.5^* L/c^* E^{-2} (m_1^{-2} m_2^{-2})$
 - mass(pion) = 139 MeV; mass(Kaon) = 493 MeV;

 $\Delta t = k^{*}LE^{-2} = 380^{*}L/m^{*}(E/GeV)^{-2} ps$

- In CEPC_v1: L varies from 1.8 meter to 3 meter at the Calorimeter entrance.
 - Helix != Straight line
 - Deeper layers has larger L
 - Take 2.6 meters as average: $\Delta t = E^{-2}$ ns
 - To separate 10 GeV pions from kaons at 3-sigma: 3 ps time resolution required.

Effective number of Hits

- Suppose each cell is equipped with high precision TDC and synchronized to ps level accuracy.
- Each hadronic shower is composed of fast and slow component; only the fast component could be used for ToF measurement.
 - Fast component ~ component with Time
- Need to know the average Fast Cell Per Shower at a given energy.
 - Required resolution = 3ps*sqrt(N_{fast})
- $N_{fast} = N_{fast}^{*}$ Hit collection Efficiency ~ 25 for 10 GeV.
 - Required resolution = 15 ps per channel

Pion(Left) – Kaon(Right) @ 10 GeV

100 events

	T < 5 ps	T < 5ps && Nlayer < 30	T < 2ps	T < 20s && Nlayer < 30
Pion	64.6	38.3	43.6	27.3
Kaon	68.3	34.8	50.2	26.3

Arbor Clustering: Hit Collection Efficiency

Arbor Core Parameter dependent.

Kaon decay...

Efficiency ~ 100% for Fast component. Thus, ~ 25 fast hits for each shower. Located at the beginning of the shower Estimation Only. Algorithm need to be developed & polished. Better align algorithm might increase the Number by ~ 2...

Effective number of Hits

- Suppose each cell is equipped with high precision TDC and synchronized to ps level accuracy.
- Each hadronic shower is composed of fast and slow component; only the fast component could be used for ToF measurement.
 - Fast component ~ component with Time
- Need to know the average Fast Cell Per Shower at a given energy.
 - Required resolution = 3ps*sqrt(N_{fast})
- $N_{fast} = N_{fast}^{*}$ Hit collection Efficiency ~ 25 for 10 GeV.
 - Required resolution = 15 ps per channel

Detector requirement

- Saturation:
 - ECAL: ~ 1000 2500 MIP
 - HCAL: ~ 100 MIP @ Scintillator HCAL
- Max Rate:
 - Z->qq event at Z pole: 5k event sample
 - Max Hit Rate o(10)Hz
 - Occupancy -o(0.1)
 - Bhabha?
 - Beam Irradiations? ...
- Time resolution:
 - ~15 ps for 3-sigma pi-K separation (10 GeV)

Processing: Calorimeter Digitization

Calo - Digi

	Saturation	MIP Energy Response	Time response	Efficiency	Multiplicity	Noise Rate	Homogene ity & Dead region
Scintillato r ECAL							
Si ECAL							
GRPC HCAL							
THGEM				R	R		

Modeling module validated.

Efforts/Time needed, for the students to get familiar with software tool, valid the parametrization and get the preliminary result