CSNS白光中子源

带电粒子测量首批实验计划

张国辉 白怀勇 张陆雨

北京大学重离子物理研究所 核物理与核技术国家重点实验室

2016-06-27 东莞

- <u>⁶Li(n,t)</u>⁴He反应
- 中子源
- 待测样品
- 带电粒子探测器
- 计数率与实验谱估算

1. ⁶Li(n,t)⁴He反应

- **Li是最轻的金属同位素** (天然丰度7.5%) 中子引发带电粒子出射 (中子测量 Q=4.78MeV)
- 造氚反应(⁶Li是核材料 聚变)

二体反应(质心系中t与4He反向出射)

轻核反应(反冲效果强烈 余核无激发态)

有较多的测量与评价数据(截面对角度的微分截面)
 能量低时截面大能量增高截面变小
 MeV能量以下为标准截面 MeV能区分歧达20%

两种主要测量方法

•屏栅电离室方法

PKU+DUBNA

LANSCE

- •大立体角
- 单能中子
- •**ΔE-E**方法
- 小立体角(多探测器)
- 白光中子

 $TOF(t_n + t_t)$

 $TOF(t_n + t_{\alpha})$

⁶Li(n,t)⁴He反应截面

测量结果 (屏栅电离室法)

- International Conference on Nuclear Data for Science and Technology 2007
- DOI: 10.1051/ndata:075
 63

干扰少 能量低

• ⁶Li(n,<u>t)</u>⁴He Q=4.78MeV

• ⁶Li(n,<u>p</u>)⁶He Q=-2.773MeV

• ⁶Li(n,n'd)⁴He Q=-1.47MeV

选择⁶Li(n,t)⁴He的原因与目的

• 反应截面大

• MeV以下能区是标准截面 在0.24MeV附近有一个共振峰 获得待测事件

检验系统与方法

• 在几个MeV能区结果分歧较大 得到新的结果

2. CSNS中子源

- 正常功率双束团模式
 通量密度 1.5×10⁷ n/(s cm²)
 注量率 <u>3×10⁸ n/s</u> (\$50mm)
- •1/10功率则1/10 单束团模式再减半
- 中子能谱与通量应有专门的实验测量
 保证**束斑**的空间均匀性与位置稳定性

重新划分能量间隔(合道)

•待测样品

⁶LiF (⁶Li富集度91%)

厚度 <u>1.0</u> mg/cm² (不均匀性<8% ⁶Li核数误差<2%) 直径 50 mm

· 衬底/本底片 (本底需要测量)
 Ta片 厚度0.1mm 背对背<u>双样品</u>
 (或mylar(C₁₀H₁₄O₄)膜 厚度0.8mg/cm² 单样品)
 直径 60 mm

4. 粒子探测器

•2类探测器

ΔE-E 面积3.0×3.0cm² Si半导体 2.5×2.5cm²

- **位置** 8个以上角度 距离样品~20cm

5. 计数率估计

21

核心问题

CSNS⁶Li(n,t)⁴He反应带电粒子实验测量

- 低能粒子因吸收(下阈)及本底(+燥声)而探测不到
 探测器下阈越低越好
- 高能粒子因反应截面低而统计不够

中子源强越高越好

结论

• CSNS首批实验⁶Li(n,t)⁴He测量

在1/10功率中子源强情况下 如果中子源均匀稳定+探测器及获取系统等正常

得到0.1~0.4MeV能区的数据相对容易(~2周束流时间)
 得到1~10MeV能区的数据需要~1个月的束流时间

以上计划需要检查、确认与完善。 请各位提出批评与建议! 谢谢!

下一步工作

- · 探测器(靶室)的测试
 探测器立体角(效率)测量
 探测器单元的数据获取
- 编制实验数据处理软件

实时显示已获取的测量事件 数据处理得到微分截面与截面(含误差分析)

• 理论分析与模拟计算 R矩阵分析RAC MCNPX GEANT4

不同能量的中子飞行时间

En/MeV	1.0 E-6	5.0 E-6	1.0 E	-5 5	.0 E-5	1.0 E-4	4 5.0	E-4	1.0 E-3	5.0 E-3	0.01	0.05
t (l=55m)/us	3971	1776	125	6 5	561.6	397.1	17	7.6	125.6	56.16	39.71	17.76
t (l=80m)/us	5777	2583	182	6 8	816.8	577.6	25	258.3		81.68	57.76	25.83
En/MeV	0.1	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
t (l=55m)/us	12.557	5.617	3.973	2.811	2.296	1.990	1.781	1.626	1.506	1.410	1.330	1.262
t (l=80m)/us	18.265	8.170	5.779	4.088	3.340	2.894	2.590	2.365	2.191	2.051	1.934	1.836

1/25 s = 0.04s = 40 ms =40000 us

- International Conference on Nuclear Data for Science and Technology 2007
- DOI: 10.1051/ndata:07 563

MCNPX模拟结果 实验室系中出射t的角分布

