2016 CEPC-SppC Study Group Workshop, Beihang University, Sep 02, 2016

Double Parton Scattering at the SppC

Qing-Hong Cao Peking University

In collaboration with Yandong Liu, Ke-Pan Xie, Bin Yan, arXiv:1609.xxxxx

Outline

- + What is Double Parton Scattering (DPS)?
- + Electroweak DPS processes at the SppC
 - 1. Wjj production
 - 2. Same-sign WW pair production
- + Summary

High energy hard collision

- One "hard" 2 to 2-parton \rightarrow 2 "jets" with large P_{T1} (hard)
- breakup of the p and \bar{p} ("beam remnants")
- "underlying event" = remnants + initial-state radiation
- can replace the 2 jets by $\gamma + jet$, W, Higgs, etc

Two hard interactions in one collision

- $P_{T1}(hard)$, $P_{T2}(hard)$, plus the underlying event
- also processes in which 2 initial partons produce 4 jets

Single parton scattering

• One hard collision per pp interaction: $ij \rightarrow abcd$

Well established methodology for calculations

$$d\sigma^{SPS} = \sum_{i,j} \int f_p^i(x_1,\mu) f_p^j(x_1',\mu) d\hat{\sigma}_{(ij\to abcd)}(x_1,x_1',\mu) dx_1 dx_1'$$

What is double parton scattering?

• Two hard collisions per pp interaction

- Does it exist as a discernable contribution?
- What are its characteristics, allowing its measurement?
- Heuristic cross section for $pp \rightarrow b\bar{b}j_1j_2X$,

 $d\sigma^{DPS}(pp \to b\bar{b}j_1j_2X) = \frac{d\sigma^{SPS}(pp \to b\bar{b}X)d\sigma^{SPS}(pp \to j_1j_2X)}{\sigma_{\text{eff}}}$

6

Parton distribution of two partons

Several Assumptions

$$F(x_1, x_2, \vec{b}) = f(x_1)f(x_2)G(\vec{b})$$

Longitudinal component

Transverse component

 $x_{1,2}$: longitudinal momentum fraction

1) Longitudinal component:

Products of two independent single PDF (reasonable for small x)

2) Transverse component:

$$G(\vec{b}) = \int F_{\perp}(\vec{b}_1) F_{\perp}(\vec{b}_1 - \vec{b}) d^2 \vec{b}_1$$

Effective transverse overlap area of partonic interaction

$$\frac{1}{\sigma_{eff}} = \int d^2 b G^2(\vec{b})$$

$$d\sigma^{DPS}(pp \to b\bar{b}j_1j_2X) = \frac{d\sigma^{SPS}(pp \to b\bar{b}X)d\sigma^{SPS}(pp \to j_1j_2X)}{\sigma_{\text{eff}}}$$

Factorization/independent hard scatters cannot be strictly true, certainly not if any parton x > 0.5

$\sigma_{ m eff}$

Measures the effective size of the core in which accompanying partons are confined

Bounded by the transverse size of a proton

Different for gg and qq subprocesses? Energy dependent?

Large dynamic range of SppC offers opportunity to explore this phenomenology; measure σ_{eff}

Electroweak DPS at the LHC and SppC

SPS x-sec (LHC) *jj*: ~ 10^8 pb *W/Z*: ~ 10^4 pb

j+ γ : ~ 10⁵ pb

DPS combo: $jj \otimes jj$ $jj \otimes W/Z$ $W/Z \otimes W/Z$

Electroweak DPS at the LHC and SppC

$$\sigma^{DPS}(AB) = \frac{m}{2\sigma_{\text{eff}}} \sigma^{SPS}(A) \sigma^{SPS}(B) \qquad \sigma_{\text{eff}} \sim 15 \text{ mb}$$

SPS x-sec: $jj: \sim 10^8$ pb; $W/Z: \sim 10^4$ pb; $j+\gamma: \sim 10^5$ pbDPS process: $jj \otimes jj$ $jj \otimes W/Z$ $W/Z \otimes W/Z$

R. M. Godbole et al. Z. Phys. C47, 69 (1990);
E. L. Berger et al. Phys. Rev. D81, 014014 (2010), 0911.5348;
S. Chatrchyan et al. (CMS), JHEP 03, 032 (2014), 1312.5729.

1) $W \otimes jj$ production: DPS versus SPS

Transverse momentum of the leading jet

 $S_{\phi} = \frac{1}{\sqrt{2}}\sqrt{2}$ $\sqrt{\Delta\phi(l,\not\!\!\!E_T)^2 + \Delta\phi(j_1,j_2)^2}$

Collider simulation

W-boson decaying into a pair of leptons

- 1. exactly one charged lepton with $p_T^l \ge 35$ GeV, $|\eta^l| \le 2.5$;
- 2. exactly two hard jets with $p_T^j \ge 25$ GeV, $|\eta^j| \le 2.5$;
- 3. $\not\!\!\!E_T \ge 30 \text{ GeV};$

MadEvent / Pythia /Delphes (Parton level results checked with homemade code)

Collider simulation

13TeV LHC	(L=1 fb ⁻¹)
-----------	-------------------------

Process	Generator level	After cut I	After cut II	After cut III	After cut IV
DPS $W(\rightarrow l\nu_l)jj$	639056	141639	35170	24308	23546
$W(\rightarrow l\nu_l)jj$	7529710	2262220	395275	228330	193813
$t\bar{t}$ (all possible decays)	possible decays) 461001		10255	8457	6455
$t(\rightarrow b l \nu_l) j$	36577	13456	5751	4069	3344
tW (all possible decays)	39450	7214	2012	1506	1154
$Z(\rightarrow ll)jj$	284037	129799	53003	5594	4200
f^{DPS}	_	0.05	0.07	0.09	0.10

$f \equiv \frac{\#(\text{DPS})}{\#(\text{DPS} + \text{SPS} + \text{BG})}$

100TeV SppC (L=0.1 fb⁻¹)

Process	Generator level	After cut I	After cut II	After cut III	After cut IV
DPS $W(\rightarrow l\nu_l)jj$	5375310	945360	246794	163131	154847
$W(\rightarrow l \nu_l) j j$	7768790	2124970	422557	253758	211377
$t\bar{t}$ (all possible decays)	2401890	333570	41949	34872	26642
$t(\rightarrow b l \nu_l) j$	51296	17127	6856	4956	3964
tW (all possible decays)	174203	27599	6607	5252	3829
$Z(\rightarrow ll)jj$	449478	167953	61483	9038	6906
$f^{ m DPS}$	_	0.26	0.31	0.35	0.38

2) Same-sign WW pair production

(golden channel of DPS)

Transverse momentum of the leading lepton

Azimuthal angle info: not very useful

Collider simulation

- 1. exactly two same sign charged leptons, with the leading lepton $p_T^{l_1} \ge 20$ GeV, $|\eta^{l_1}| \le 2.5$, and the trailing lepton $p_T^{l_2} \ge 10$ GeV, $|\eta^{l_2}| \le 2.5$;
- 2. exactly 0 jet with $p_T^j \ge 25$ GeV, $|\eta^j| \le 2.5$;
- 3. $\not\!\!\!E_T \ge 20 \text{ GeV};$
- 4. $|p_T^{l_1}| + |p_T^{l_2}| > 45$ GeV;
- 5. $M_{l_1 l_2} \in [20, 75] \cup [105, +\infty] \text{ GeV};$
- 6. $|p_T^{l_1}| < 60$ GeV, and $|p_T^{l_2}| < 60$ GeV.

Collider simulation

13TeV LHC (L=50 fb-1)

Process	Generator level	After cut I	After cut II	After cut III	After cut IV	After cut V	After cut V
DPS $W^{\pm}W^{\pm}$	807	199.5	129.7	108	99.3	82.8	82
$W^{\pm}W^{\pm}jj$	718	204.07	4.71	4.20	3.97	3.24	2.06
$t \overline{t}$	23050050	177.53	2.82	2.82	1.88	1.88	0.94
Wl^+l^-	19600	1807.88	333.26	284.05	262.87	244.61	123.9
$l^+l^-l^+l^-$	1615	94.62	8.69	1.41	1.28	1.03	0.59
f^{DPS}	_	0.08	0.27	0.27	0.27	0.25	0.39

$$f \equiv \frac{\#(\text{DPS})}{\#(\text{DPS} + \text{SPS} + \text{BG})}$$

100TeV SppC (L=1 fb⁻¹)

Process	Generator level	After cut I	After cut II	After cut III	After cut IV	After cut V	After cut VI
DPS $W^{\pm}W^{\pm}$	1100	151.1	78.1	64.1	58	47.6	46.9
$W^{\pm}W^{\pm}jj$	223.53	39.25	0.79	0.7	0.65	0.54	0.29
$t\bar{t}$	24018900	149.69	5.87	5.87	2.43	0	0
Wl^+l^-	4044	360.73	42.1	36.08	33.76	26.77	14.76
$l^+l^-l^+l^-$	275	17.09	1.25	0.24	0.22	0.17	0.08
f^{DPS}	_	0.21	0.61	0.60	0.61	0.63	0.76

Summary

Large dynamic range of SppC offers opportunity to explore the DPS phenomenology and measure σ_{eff}

