Status and plans of CEPC-TPC

Huirong QI

Institute of High Energy Physics, CAS

September 2nd, 2016, Beihang University, Beijing

Outline

- Detector requirements
- Critical challenges of CEPC-TPC
- Some activities and progress
- Summary

Detector requirements

Physics requirements for CEPC tracker Detector

PID

Momentum resolution measurement

- 3 -

Critical challenges of CEPC-TPC

- Occupancy: at inner diameter
 - Occupancy should be very smaller
 - Overlapping tracks
 - Background at IP
- Ion Back Flow
 - Continuous beam structure
 - Long working time with low discharge possibility
 - Necessary to fully suppress the space charge produced by ion back flow from the amplification gap
- Calibration and alignment
 - Laser calibration system

2015~2016, some activities for the critical challenges

To reduce **IONS** To reduce distortion

~100um positron resolution with calibration

Critical challenge: Occupancy

- Occupancy estimation
 - Beamstrahlung (e+e- pairs)
 - **D** Pair production
 - Hadronic background
 - Lost Particles (Beam Halo)
 - **Synchrotron Radiation**
 - More than 100keV of Gamma
 - No damage for working gas
 - No consideration for the beam collimator, the value might larger

TPC voxel occupancy simulated in TPC radius

Simulation of occupancy

- Occupancy@250GeV
 - Very important parameter for TPC
 - Detector structure of the ILD-TPC like
 - ADC sampling 40MHz readout
 - **Time structure of beam: 4us/Branch**

CLIC_ILD ~30%@3TeV 1 \times 6mm² Pads CLIC_ILD ~12%@3TeV 1 \times 1mm² Pads NO TPC Options!

- □ Beam Induced Backgrounds at CEPC@250GeV(Beam halo muon/e+epairs)+ $\gamma\gamma$ →hadrons with safe factors(×15)
- Value of the occupancy inner radius smaller
- Optimization for the pad size in $r\Phi$

Preliminary of occupancy

Compare with ILC beam structure

□ In the case of ILD-TPC

- Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- Bunches time ~554ns
- Duration of train ~0.73ms
- Used Gating device
- Open to close time of Gating: 50µs+0.73ms
- Shorter working time
- In the case of CEPC-TPC
 - Bunch-train structure of the CEPC beam (one bunch every 3.63µs) or partial double ring
 - No Gating device with open and close time
 - Continuous device for ions
 - Long working time

NO Gating device !

Critical challenge: Ion Back Flow and Distortion

In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron >10000 trains
- The ions have to be neutralized during the ~4us period continuously

Amplification ions@ILC

Amplification ions@CEPC

Requirements of Ion Back Flow @CEPC

- **Electron:**
 - □ Drift velocity ~6-8cm/us@200V/cm
 - $\square Mobility \ \mu \sim 30-40000 \ cm^2/(V.s)$
- **Ion:**
 - Mobility $\mu \sim 2 \text{ cm}^2/(\text{V.s})$

$$S_{N} = \sqrt{\left(\frac{\partial}{\partial x_{1}}\right)^{2}S_{x_{1}}^{2} + \left(\frac{\partial}{\partial x_{2}}\right)^{2}S_{x_{2}}^{2} + \left(\frac{\partial}{\partial x_{3}}\right)^{2}S_{x_{3}}^{2}}$$

Standard error propagation function

Transverse and

New ideas for the ions?

- Our group was asked to "think" on an alternative option for CEPC TPC concept design
- And we did our best ...
- We proposed and investigated the performance of a novel configuration for TPC gas amplification: GEM plus a Micromegas (GEM+Micromegas)
- Hybrid micro-pattern gaseous detector module
- **GEM+Micromegas detector module**
 - **GEM** as the preamplifier device
 - GEM as the device to reduce the ion back flow continuously
 - Stable operation in long time
 - Low material budget of the module

ANSYS-Garfield++ simulation (0T, Left: ions; Right: electrons)

Test of the new module

- **Test of GEM+Micromegas module**
 - □ Assembled with the GEM and Bulk-Micromegas
 - □ Active area: 50mm × 50mm
 - **A** X-tube ray and X-ray radiation source
 - Simulation using the Garfield
 - Ion back flow with the higher X-ray: from 1% to 3%
 - Stable operation time: more than 48 hours
 - □ Separated GEM gain: 1~10

Photo of the GEM+Micromegas Module with X-ray

HV E_d 4mm GEMHV E_t 1.4mm MeshHV E_a 0.128mm Anode

Supported by 高能所创新基金

Energy spectrum@⁵⁵Fe

Source: 55 Fe, Gas mix: Ar(97) + iC₄H₁₀(3)

An example of the 55Fe spectra showing the correspondence between the location of an X-ray absorption and each peak.

Gain of GEM + MM

□ Test with Fe-55 X-ray radiation source

- Reach to the higher gain than standard Micromegas with the pre-amplification GEM detector
- Similar Energy resolution as the standard Micromegas
- □ Increase the operating voltage of GEM detector to enlarge the whole gain

Discharge and working time

□ Test with Fe-55 X-ray radiation source

- Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
- Discharge possibility of hybrid detector could be used at Gain~10000
- **•** To reduce the discharge probability more obvious than standard Micromegas
- At higher gain, the module could keep the longer working time in stable

IBF preliminary result

Gas gain and IBF versus (a): GEM voltage, micromesh $V_{mesh} = 420V$ and (b): micromesh voltage, $V_{GEM} = 340V$. $E_d = 250V/cm$, $E_t = 500V/cm$

□ Test with X-tube@21kV~25kV using the Hybrid module

- Charge sensitive preamplifier ORTEC 142IH
- Amplifier ORTEC 572 A
- **MCA of ORTEC ASPEC 927**
- Mesh Readout
- Gas: Ar-iC4H10(95-5)
- **Gain:** ~6000

Contribution of the ions from the drift region to be γ , calculation of IBF, η :

$$I_{mesh} = G\gamma$$

$$I_c = \gamma + G\gamma\eta = \gamma + \eta I_{mesh}$$

G is the gas gain of the detector.

	GEM+MMG 420LPI (IHEP)	2GEMs + MMG 450 LPI (Yale University)	Micromegas only 450 LPI (Yale University)
Ion Back Flow	~0.1% Edrift = 0.25 kV/cm	(0.3 –0.4)% Edrift = 0.4 kV/cm	(0.4 –1.5)% Edrift= (0.1-0.4) kV/cm
<ga></ga>	4000~5000	2000	2000
ε-parameter(=IBF*GA)	4~5	6~8	8~30
E –resolution	~16%	<12%	<= 8%
Gas Mixture (2-3 components)	Ar + iC4H10	Ne+CO2+N2, Ne+CO2,Ne+CF4, Ne+CO2+CH4	X + iC4H10 (Ar+CF4+iC4H10)
Sparking (²⁴¹ Am)	<10 ⁻⁸	< 3.*10 ⁻⁷ (Ne+CO2) (N.Smirnov report)	
Possible main problem	Thin frame	More FEE channel	#
Goals	CEPC TPC	ALICE upgrade	#

Laser calibration for TPC prototype Supported by 国家基金委重点基金

• Goals of laser for TPC detector

- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Drift velocity, gain uniformity
- To reduce the distortion effect
 - $\mathbf{E} \times \mathbf{B}$ effect study
 - Drift Velocity measurement
 - Good resolution in space and tin
 - **No production of σ-rays**
 - No multiple scattering
- Baseline design (DONE)
 - Nd:YAG laser device
 - $\lambda = 266 \text{ nm or } E = hv = 4.66 \text{ eV}$
 - Energy: ~100 uJ/pulse
 - Duration of pulse: 5 ns
 - Active area:200mm × 200mm
 - Drift length: 500mm
 - Outer diameter:~400mm
 - GEM readout

Laser calibration baseline design

The assembled module test with 266nm laser

Tsinghua and IHEP Cooperation

Some activities for domestic cooperation

Communicate meeting

- **Tsinghua University**
- IHEP, CAS
- UCAS, CAS
- Lanzhou University
- IMP, CAS
- **USTC**
- SINAP, CAS
- **CIEA**
- Shandong University
- **SJTU**

Invited talks

- Saga University
- CEA Saclay
- Korean Mecaro

TPC Tracker Detector Technology mini-Workshop

Participate in the collaboration group

Collaboration for the IBF R&D: CEA Scalay (France) IHEP, Tsinghua Univ. (China)

Aleksan Roy (Saclay) GAO Yuanning (THU) QI Huirong (IHEP)

Collaboration for the Beam test with Asia Module:

KEK (Japan) DESY (Germany) IHEP, Tsinghua Univ. (China)

Targets:

- R&D of IBF used UV light
 - Goal: ~0.1% IBF, Resistive Micromegas modules, Hybrid modules
- **TPC** Prototype design with Laser calibration
 - Readout active area: ~200mm², Drift length: ~500mm
- Beam test experiment and data analysis
 - Fixed date: 30,Oct./2016~14,Nov./2016
 - GEM module with the field shaper in 1.0 Tesla in PCMAG
- Toward CEPC CDR

Keisuke Fujii (KEK) Schrader, Andrea(DESY) GAO Yuanning (THU) QI Huirong (IHEP)

Summary

Critical requirements for CEPC TPC modules

- Beam structure
- Obvious distortion
- **Continuous Ion Back Flow**

Some activities and simulations

- Simulation of the occupancy of the detector, the hybrid structure gaseous detector's IBF
- TPC gas amplification setup GEM+MM investigated as a high rate TPC option without the standard gating grid or others gating device
- Some preliminary IBF results
- Some common effort R&D to participate in the collaboration

Thanks very much for your attention !