

IceCube-Gen2 Technical developments

J.P. Yanez for the **IceCube-Gen2 Collaboration** NNN workshop Beijing, November 2016

Bourses postdoctorales Banting Postdoctoral Fellowships

j.p.yanez@ualberta.ca

The IceCube-Gen2 facility

A wide band neutrino observatory

- » Optical, radio & surface veto
- » MeV to EeV v detection range \rightarrow supernovae ... astrophysical
- » Requires additional 13k to 15k optical modules

» IceCube DOM

- » Single, large (10") PMT per module
- » Full waveform digitization
- » Glass transmissivity of 0.5 at ~350 nm
- »Calibration LEDs on-board
- » Power consumption ~3W
- » Discriminator
- » Local coincidence logic for readout
- » Delay line: 75ns
- » Redundant digitizers

- »Photon counting capabilities to high charge (1-thousands pe)
- » Withstand > 550 bar freeze-in pressure
- » Survive shock vibration
- » Gel cushioning for optical coupling, electronics

» IceCube DOM Improve

- » Single, large (10") PMT per module
- » Full waveform digitization
- » Glass transmissivity of 0.5 at ~350 nm
- »Calibration LEDs on-board
- Power consumption ~3W
- » Discriminator
- » Local coincidence logic for readout
- » Delay line: 75ns
- » Redundant digitizers

Keep

- »Photon counting capabilities to high charge (1-thousands pe)
- » Withstand > 550 bar freeze-in pressure
- » Survive shock vibration
- » Gel cushioning for optical coupling, electronics

» Gen2 wish list

- » Simpler, cleaner electronics
- » Segmented modules, more but smaller PMTs
- » Uniform angular coverage
- » Directional information from single modules
- » Dynamic digitization scheme
- » Lower photon wavelength threshold
- » Better understood LEDs
- » Reduce power consumption to ~1W per OM

- »Photon counting capabilities to high charge (1-thousands pe)
- » Withstand > 550 bar freeze-in pressure
- » Survive shock vibration
- » Gel cushioning for optical coupling, electronics
 - Consider designs which improve these points

IceCube-Gen2 modules

Design of new sensors - Baseline

- » Same performance, simpler design
- » Mechanical design tested, reliable
- » Performance in-situ well understood

Design of new sensors - D-Egg

- » 2x8" PMTs Up/down = 12" diameter
- » Strain measurement @ 700bar
- » Towards uniform acceptance
- » Self-veto potential
- » Benefits from glass + higher QE

Design of new sensors - D-Egg

- » 2x8" PMTs Up/down = 12" diameter
- » Strain measurement @ 700bar
- » Towards uniform acceptance
- » Self-veto potential
- » Benefits from glass + higher QE

Design of new sensors - D-Egg

- » 2x8" PMTs Up/down = 12" diameter
- » Strain measurement @ 700bar
- » Towards uniform acceptance
- » Self-veto potential

» Benefits from glass + higher QE

*Transmittance cutoff of the D-Egg glass appears to be very sensitive to impurities

- » Adapted from KM3NeT mDOM
- » 24 x 3-inch PMTs
- » Diameter 14 inch = 355 mm
- » Pressure rating 700 bar
- » 3D printed PMT holding structure
- » 4π angular coverage
- » Reflectors
- » Main challenge: power for sampling complex waveforms

- » Adapted from KM3NeT mDOM
- » 24 x 3-inch PMTs
- » Diameter 14 inch = 355 mm
- » Pressure rating 700 bar
- » 3D printed PMT holding structure
- » 4π angular coverage
- » Reflectors
- » Main challenge: power for sampling complex waveforms

- » Adapted from KM3NeT mDOM
- » 24 x 3-inch PMTs
- » Diameter 14 inch = 355 mm
- » Pressure rating 700 bar
- » 3D printed PMT holding structure
- » 4π angular coverage
- » Reflectors
- » Main challenge: power for sampling complex waveforms

3x IceCube DOM eff area – very uniform

- » Adapted from KM3NeT mDOM
- » 24 x 3-inch PMTs
- » Diameter 14 inch = 355 mm
- » Pressure rating 700 bar
- » Structure is 3D printed
- » 4π angular coverage
- » Reflectors
- » Main challenge: power

Glass of mDOM and D-Egg becoming comparable

- » Wavelength-shifter optical module
- » Custom paint shifts light from UV (250-400nm) to blue (>400nm)
- » Light captured travels in tube
- » 2 small (1.5") PMTs at the ends
- » Low threshold
- » Directionality lost

- » Wavelength-shifter optical module
- » Custom paint shifts light from UV (250-400nm) to blue (>400nm)
- » Light captured travels in tube
- » 2 small (1.5") PMTs at the ends
- » Low threshold
- » Directionality lost

- » Wavelength-shifter optical module
- » Move UV (250-400nm) to blue (>400nm
- » Multiple PMTs inside the tube
- » Keep directional information
- » Acceptance higher at horizon

Summary of new sensors

mDOM

36 cm

- Directional information
- More sensitive area per module
- Precise timing
 PoS(ICRC2015)1147

30 cm

- Directional information
- More sensitive area per module
- Smaller geometry PoS(ICRC2015)1137

• More sensitive area per \$

~26 cm

WOM

- Small diameter
- Lower noise rate
- Lower UV threshold

PoS(ICRC2015)1134

13 cm

- Small diameter
- Directional info.
- More area per module

IceCube-Gen2 readout

Readout schemes

ADC

- » Measure amplitude at fixed times
 - » Conventional approach, used in IceCube
 - » Power consumption too high for multiple PMTs

Leading edge time and time-over-threshold*

- » Measure at a fixed amplitude
 - » Low power, no current flow below threshold
 - » Need multiple thresholds/discriminators

*Readout scheme designed for mDOM, but the idea is applicable to all modules

Readout block diagram

Discriminators

- » Multi-comparator design
- » Pseudo-digital comparator output from base to mainboard
- » Time-stamping of leading- and trailing- edge in FPGA
- » Two-fold strategy
 - »ASIC design: 63 comparators w/6-bit encoder
 - » Four comparator discrete design
- » Output: pseudo-digital singal

Pulse reconstruction example

From A.Kappes

Pulse reconstruction example

IceCube-Gen2 schedule

Conclusions

» IceCube-Gen2 science can benefit from new optical sensors

- » Baseline: IceCube revamped
- » New designs and adaptations under study
- » Mechanical & partial prototypes built
 - » Characterization of properties underway
 - » Functional devices expected within a year
- » Simulation, reconstruction with new modules ongoing

» Promising low-power readout for mDOM developed
 » No physics losses, applicable to other modules

Backup slides

mDOM PMT Properties

TTS (FWHM)	< 4 ns
QE @ 470 nm	22%
QE @ 404 nm	27%
dark rate @ 20C	400 – 1500 Hz
dark rate @ -30C	< 100 Hz
supply voltage	< 1400 V
gain	3 x 10 ⁶
peak-to-valley ratio	> 3.5

improves dark count for cathode @ -HV

3 4

based on KM3NeT spec's / measurements

mDOM effective area

