

PMT Instrumentation of JUNO

Zhonghua Qin (IHEP, Beijing)

On behalf of JUNO collaboration qinzh@ihep.ac.cn NNN2016, Nov. 3rd-5th, Beijing

JUNO experiment

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

JUNO detector

AS: Acrylic sphere; SSLS: stainless-steel structure

Overview of PMT instrumentation

- Totally 20000 20-inch PMTs for CD and VETO detector
 - 15000 MCP-PMTs from of NNVT (North Night Vision of Technology CO., LTD),
 - -5000 dynode-PMTs from Hamamatsu company
- Maximum 36000 3-inch PMTs for CD

 The PMT instrumentation covers the PMT testing/Characterization, HV divider, earth magnetic field shielding, waterproof potting, implosion protection and PMT installation.

Requirement on PMT performance

The main Parameters for each PMT:

	typical value (lower limit)				
Parameter list	MCP PMT	Dynode PMT	3 inch PMT		
PDE (QE*CE) @420nm	27% (>24%)	27% (>24%)	25% (QE)		
Non-uniformity of PDE	8% (< 10%)	5% (<15%): within ±70°; 20%(<30%): within ±80°;	/		
Gain	10 ⁷	10 ⁷	10 ⁶		
HV	2500 V (<2800V) @Gain=10 ⁷	2000V (<2500V) @Gain=10 ⁷	1000V@10 ⁶		
P/V	3.5 (>2.8)	3 (>2.5)	≥2		
TTS(FWHM)	12ns (<15ns)	2.7ns (<3.5ns)	≤3.5		
Rise/Fall time	1.7ns / 12ns	5ns / 9ns	/		
Dark rate	20kHz (<30kHz)	10kHz (<50kHz)	≤1.5KHz		
Ratio of Pre- pulse/After pulse	0.5% (<1%) / 1% (<2%)	0.8% (1.5%) / 10% (<15%)	/		
Non-linearity @ Gain=10 ⁷ , 0-1000pe	< 10%	< 10%	/		
Radioactivity level (ppb)	²³⁸ U:50, ²³² Th:50, ⁴⁰ K:20	²³⁸ U:400, ²³² Th:400, ⁴⁰ K:40	/		
Pressure tolerance	Up to 0.8MPa	Up to 0.8MPa	Up to 0.8MPa		

MCP-PMT

Dynode -PMT

3inch-PMT

PMT mass testing /characterization (1)

- Four test facilities will be equipped in standard commercial container
 - each container can test 36 PMTs in parallel;
 - LED located in each testing drawer box;
 - homogeneous light field produced by the light shaping tube;
 - earth magnetic field shielded to less than 10%;
 - commercial electronics used for the first two containers and JUNO electronics for the rest;
 - the first test facility will be available by end of 2016;

PMT mass testing /characterization (2)

- Three scanning stations is designed for PDE (Photon detection efficiency) nonuniformity measurement and detailed study of PMT performance
 - automatically scanning the PDE non-uniformity of the photo-cathode;
 - 14 stabilized LEDs for PDE scanning of about 3-5% of the total PMTs;
 - detailed study can be performed by the scanning station;

PMT High Voltage Divider (1)

- JUNO Requirements for HV Divider:
- Different design for MCP PMT and dynode PMT
- Gain: 1×10^7 (5 $\times 10^6$ to 2×10^7)
- HV & DC current : <300μA@3000V
- Linearity & Dynamic range
 up to 1000p.e. with non-linearity < 10%;
 up to 4000p.e. dynamic range;
- Life time: failure rate < 0.1%/year (or 0.5% in 6 years);
- Overshoot and ringing minimization: about 1% with 50Ω load impedance;
- Flasher elimination
- Overvoltage protection
- Support for electronics PCBs PMT-PCB connection; Integration with HV unit; connection between PCBs;
- -Pluggable for PMT mass testing system

JUNO-Dynode-divider-V1.0

PMT High Voltage Divider (2)

Overshoot optimization to 1% level

C1=4.7nF, C2=22nF, R2=50 Ω

Overshoot ratio	R1=10 k	R1=50 Ω		
MCP-PMT 8"	~1%	~11%		
MCP-PMT 20"	~1%	~11%		
Hamamatsu 20"	~1%	~10%		
HZC 9"	~1%	~10%		

HV ratio optimization for MCP PMT

- Reliability study
 - Capacitor has lower reliability
 - Temperature impacts on reliability

Waterproof Potting (1)

- JUNO Requirements and Challenges:
- HV divider, HV module, and the front-end electronics including ADC, GCU etc. need to be waterproof potted;
- Working under 45m-deep high-purity water;
- 20 years life-time, with a failure rate <0.5% for the first 6 years, 5% for all years;
- 15W heat dissipation from the electronics need to be removed

- the surface temperature of the chips need to keep $< 40 \degree C$;

Waterproof Potting (2)

- preliminary design of the potting scheme
- -with multiple waterproof layers: putty + glue + pouring sealant;
- a stainless-steel shell will be the encloser for heat conducting;
 - HDPE as the cable jacket for easier surface treatment;
- Potting for JUNO prototype
 - only HV divider was there;
- totally 40 PMTs with different types potted;
- work on going: many samples for heat conducting test, puttty test, thermal cycle test, and connector study.

SS Shell

PMT

Putty + heat shrink tube

pouring sealant

Cable sealing

adhesive

Heat conducting test

PMT implosion Protection (1)

- Requirements for PMT protection
 - Prevent chain reaction triggered by one PMT implosion;

Study with naked PMT

PMT start break

shockwave initiated

 Requirement on Protective cover

- good transparency, least possible light absorption and attenuation;
- thinnest possible, minimize the impact on PMT coverage;
- compatible with pure water and _{SS} cover low radioactivity;

PMT implosion Protection (2)

- Protective cover prototyping
 - totally produced 20 acrylic samples
 - done by different manufacturing technique
 - also produced some PC(polycarbonate) and PETG (Polyethylene terephthalate) cover for

test

- Implosion test with multiple PMTS
 - tried 3 times this year;
 - with different configurations;

10mm and 12mm thick acrylic covers are survived;

PMT implosion Protection (3)

Summary of the tests in 2016

Cover material	Average thickness(mm)	Minimum thickness (mm)	Number of tested	Number of failed
Acrylic	12	11.5	5	0
Acrylic	10	8.5	2	0
Acrylic	9	6.8	2	1
Acrylic	8	6.5	1	1
PC(polycarbonate)	3	3	2	2
PETG	3/5	3/5	3	3
Stainless-steel	2-2.5	1.5	15	0

The main conclusions

PC and PETG will not work if their thickness < 5mm;

but there will be significant loss of light if the thickness > 5mm, for both PC and PETG;

Acrylic cover with a minimum thickness about 9mm are always survived, so it's a good choice for JUNO.

PMT coverage and module design

- Require the PMT coverage > 75% to connect as many as possible photons;
- A preliminary layout from engineering showing: 75% coverage seems promising, for different PMT module design:

option 1:

- 1) with one largest possible module in the window, and smallest possible modules on the back of truss;
- 2) layout starting from the middle of the window, minimizing the influence from the support bars;
- 3) 17510 PMTs in total, coverage is 75.1%

option 2:

- 1) divided into several modules (3, or2, or 1) in the window but with 3 windows as one unit
- 2) minimize the influence from the support bars.
- 3) 17570 PMTs in total, coverage is 75.4%

Layer 1, 2, 3

PMT Installation consideration (1)

• Option 1, the baseline option: PMT installation in parallel to acrylic sphere construction;

- advantage: save the total construction time;
- disadvantage: interference between PMT installation and acrylic sphere construction
- Option 2: PMT installation after acrylic sphere constructed

- advantage: no inference
- disadvantage: more time. But the installation can be in parallel for upper and lower semi-sphere.

PMT Installation consideration (2)

- conceptual design of Platforms, tools for PMT installation
 - for option 1: outside track for platform movement, and inner track for PMT module movement

platform moving on sliding track

PMT module moving on sliding track

PMT module positioning

- For option 2: rotating platform outside of the truss and suspended platform inside, module carried by overhead travelling crane or lifting platform with posture adjustable;

Posture adjustable
Lifting platform

Normal Lifting platform

Schedule for PMT instrumentation

```
PMT mass testing/characterization: 2017.1 - 2019.1
  Both PDR and FDR were finished;
PMT HV divider mass production: 2018.1 - 2019.7
  PDR will be in 2017.6;
  FDR will be 2017.12;
PMT potting: 2018.7 - 2019.7
  PDR will be in 2017.6;
  FDR will be in 2017.12;
PMT implosion protection mass production: 2018.1 - 2019.1
  PDR will be in 2017.1;
  FDR will be in 2017.7;
PMT installation: 2018.12 - 2019.7
  PDR will be in 2017. 6;
  FDR will be in 2017.12;
```

and JUNO will be running in about 2020. 5 as current schedule.

Thank you for your attention!