

nEXO Readout Electronics R&D Status

Wu Wenhuan

Institute of High Energy Physics NNN'16, for the nEXO electronics group

Nov. 3, 2016

Ονββ Search at EXO-200/nEXO

EXO-200: 200kg liquid-Xe TPC

nEXO Detector

- ~ 5 tonne LXe TPC, 4.7 tonnes of active ^{enr}Xe (90% or higher)
- < 1.0% (σ /E) energy resolution

nEXO TPC Conceptual Design (artist's view)

Charge Readout Tiles + ASIC

Constraints:
radio-purity,
power dissipation,
eutgassing,
feedthroughs,

Silicon Photomultipliers (SiPMs) + ASIC

Baseline concept (Improved TPC design):

- Single drift volume
- Charge collection on the anode plane
- Light collection on the barrel behind field shaping rings

Charge Readout tile for nEXO

- Electrons are incident upon the strip (tile) plate (bottom)
- Each row and column of charge collection pixel is connected to a pad in one of the two rows of output pads

- The prototype of the tile includes
 30+30 (x+y) channels
 - A tile needs two ASICs
 - Output capacitance ~20pF/ch
 - →ENC<200e-@20pF
 - Event rate<1Hz

Motivation for *Cold* Electronics

Energy resolution

- Need to minimize noise for charge readout channels, and achieve single photon sensitivity for the light readout
- EXO-200 has achieved ~1.2% energy resolution at the Q value
- nEXO will reach resolution <1%,sufficient to suppress background from 2vββ

Signal multiplexing

- nEXO detector will have thousands of charge and light readout channels. Sending signals from individual channels out will be unfeasible
- Multiplexing can also reduce overall radioactivity

Adapting LAr ASIC readout for nEXO (BNL)

½ of LAR TPC FE board (=64 channels)

16-channel FE ASIC ADC Vdd regulator (ASICS on both sides)

Note numerous bypass capacitors!

Details given by Shanshan

- BNL has developed ASICs for LAr detectors, similar concepts can be applied to nEXO
- The design have be optimized for LXe
- Biggest challenge is to further reduce the radioactivity in the front-end design and noise
- The plan is to develop a 64-channel board (4 front-end ASICs and 4 ADC ASICs), appropriate for a~10x10 cm² tile.
- Progressive approach:
 - Reduce board layers and use Si-Caps
 - Low background PCB and bare ASIC
 - Integrate preamp and ADC ASICs and increase channel number to 32

Cold ASICs for Charge readout(IHEP)

- On-going R&D at IHEP
- Critical spec.: <200 e-/ch
- Two schemes:
 - Digital multiplexing→
 - Individual ASICs designs done (pre-Amp, ADC)
 - Integration need be done
 - Tested with tile
 - Analog multiplexing →
 - Based on analog sampling technique
 - v2 has been tested

Cold

Warm

- Two chips have already designed and tested
- Need more tests
 (ADC's cold, noise, etc.)
- Need to be merged

(integrated with charge tile)

Warm

7

Digital multiplexing vs. Analog multiplexing

Advantage

- All digital processing
- Simple system

Challenges

- More power
- Analog & digital crosstalk
- Too much data processing on chip
- High-speed serial data transmission, may be a challenge

Advantage

- No ADCs
 - make chip's architecture as simple as possible, also the DAQ
 - · Low crosstalk between analog and digital
- Share one buffer on chip and one
 ADC external, power reduced greatly
- Off chip ADC could be high sampling frequency to improve SNR
- Minimize number of cables between
 cold and warm (2clk+2power+1output)

Challenges

- Shielding(P+G) become important
- Noise performance a little worse

Measurement results(IHEP)

Specification	Value	Note
VDD	AVDD=1.8/DVDD=3.3	Analog power/Digital power
Peaking time	2μs /4μs	Tune switch to change
Sampling frequency	<132M	2M sampling rate/channel
ENC	~265e-	@160K
INL	<0.4%	@160K
Input signal rate	>1kHz	High rate performance
Linear range	-64fC~-0.32fC	Negative polarity
Power dissipation	<3mA@1.8V/channel	NOT include output buffer

- Radioactive Source: 90Sr
- The energy spectrum fit well with ⁹⁰Sr's spectrum

ENC decreases as T goes down

Scheme 2

Pre-integration Test

- A 3-D tile for multiplexing version
- ASIC is not final version, the chip's pins are not fixed
- The route is for wire bonding and functionality test. Not too much consideration for noise, crosstalk and other performances
- The bump-bonding option is still on the table

Some Charge Readout Design Considerations

- Reading induced current can preserve the largest amount of waveform information
- Analog multiplexing can reduce the data clock speed, but need to demonstrate high analog signal transfer fidelity
- Buffered readout of trigger events only would have data rates an order of magnitude lower than continuous readout.
- Data rates (power dissipation, cable volume) out of cryostat:
 inversely proportional to readout tile size for a given strip pitch.

nEXO SiPM Readout Development

Challenge: How to deal with large sensor capacitance?

Need low noise (< 0.1 p.e.) and fast readout

- Very large area, up to 4 m²
- Large capacitance, 3-9 nF/cm²

- Demonstrate front-end readout for a single channel using discrete components (IU, ORNL)
- Analog SiPM ASIC readout system design (BNL)
- 3D-SiPM readout (TRIUMF, Sherbrooke)

SiPM Preamp Testing (ORNL, IU)

 Measurements supporting BNL's initial estimate of max area and Lorenzo's noise formula's:

- SensL array SM-4 at LXe ~1.5 cm² active SiPM area at 90 pF/mm². Power is 20 W in FE circuits or 0.5 mW/cm².
- Formulas would set 0.1 PE limit at 1.7 cm² when scaled, in agreement with this measurement.

IU cold box, SiPM series test

- Cold box & SiPM/readout test setup completed
 - Excellent temperature stability; operation in vacuum or with
 LN boiloff purge
 - Blue LED with external pulse input, can make a few ns pulse width
 - ORNL/IU test board modified for external VCC & improved test output buffer; tested w/ current pulse w/o SiPM @
 165 K (and down to 150 K) performance is excellent with raised VCC
- Simple series connection of 2 MEG devices
 - Negative result so far for single-PE peak, but investigation will continue (one known blunder + possible series connection gain stability issue?)

From single channels to large tiles

- In the next few months, they should be able to demonstrate a single channel readout.
- Perform an intermediate demonstration with 10 x 10 cm² tile?
- For analog SiPMs, approximately 20~30 channels, about the size for an ASIC based readout, also the size of proposed Si interposer. 15

Summary on nEXO electronic R&D

- Demonstrate a complete readout chain for a charge readout tile. (not the final low background design)
 - First prototype testing has done
 - Integration with the tile will occur soon after(1st edition done)
- Prototype demonstration of an individual SiPM readout channel
- Develop overall Light readout concepts
 - Further investigation of the readout schemes
- Identify and test low background components for final low background constructions
 - Tested Si Caps, cable and PCB testing underway

THANK YOU!

Electronic R&D Goals

- Demonstrate a complete readout chain for a charge readout tile. (not the final low background design)
- Prototype demonstration of an individual SiPM readout channel. Develop overall readout concepts.
- Identify and test low background components for final low background constructions.

Currently parallel paths are being pursued for both the charge and light readout in the R&D period.

Optimizing the design is tightly coupled to detector simulation, data analysis, radio-purity budget, etc.