

The 20 inch MCP-PMT R&D in China

NNn'16

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors

Outline

- ➤ 1. The JUNO and MCP-PMT;
- 2. The new design of the MCP-PMT prototypes; the 4 π design; the 8 inch prototypes; the 20 inch prototypes;
- ➤ 3. The High PDE MCP-PMT—2015;
 the The performance of the 20 inch prototypes;
- A. The Special Behaviors of the MCP-PMT;
 the High CE; The large TTS; the aging behaviors;

1. The JUNO and MCP-PMT

Requirement: High QE 20 inch PMT;Good SPE detection capability;Wide dynamic range;Low radioactive background;More than 20 years lifetime;Can withstand 0.4MPa Pressure;> 20000 pieces;

2009: Design; 2011: Collaboration; 2012: DayaBay result; 2013: JUNO

15k MCP-PMT (75%) **Contract for JUNO Signed with NNVT** on Dec.16, 2015

MCP-PMT-8"

Dynode-PMT-9"

Dynode-PMT-8"

Outline

- ➤ 1. The JUNO and MCP-PMT;
- 2. The new design of the MCP-PMT prototypes;

the 4 π design; the 8 inch prototypes; the 20 inch prototypes;

➤ 3. The High PDE MCP-PMT—2015;

the The performance of the 20 inch prototypes;

> 4. The Special Behaviors of the MCP-PMT;

the High CE; The large TTS; the aging behaviors;

2.1 The new design of a large area PMT

are only available in small format (< 5" diameter ?) (2011)

Can we improve the Quantum Efficiency of Photocathode or Photon Detection Efficiency for the large area 20" PMT?

?? 20" UBA/SBA photocathode PMT from Hamamatzu ? QE: 20% → 40%
?? 20" New large area PMT ? Quantum Efficiency > 40% ?
or Photon Detection Efficiency: 14% → 30%

2.2 the primary design of the MCP-PMT in 2009

High photon detection efficiency + Single photoelectron Detection + Low cost

- 1) Using two sets of Microchannel plates (MCPs) to replace the dynode chain
- 2) Using transmission photocathode (front hemisphere) and reflection photocathode (back hemisphere) $\sim 4\pi$ viewing angle!

Quantum Efficiency (QE): of Transmission Photocathode 30%; of Reflection Photocathode 30%; Collection Efficiency (CE) of MCP: 70%;

PD = QE_{Trans}*CE +TR_{Photo}QE_{Ref} *CE =
$$30\%*70\% + 40\%*30\%*70\% = 30\%$$

Photon Detection Efficiency: $15\% \rightarrow 30\%$; ×~2 at least!

2.3 Project team and Collaborators

effort by Yifang Wang;

Institute of High Energy Physics, CAS

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

2.4 The R&D plan of MCP-PMT (schedule)

The design of the

IHEP-MCP-PMT

The project of

Daya Bay II (JUNO)

Prototype

PreAMP & Base

SPE

2.5 The new design of the MCP-PMT prototypes 2013;

- ➤ 2009: the design of the MCP-PMT;
- ≥2010~2011: 5"MCP-PMT prototype without SPE;
- ≥2012: 8"MCP-PMT prototype without SPE;
- **≥2013**: 8"prototypes with normal performance;
- QE ~ 25%@410nm; CE ~ 60%; P/V of SPE> 2.0;
- **≥2014: 20" prototypes with normal performance;**
- QE ~ 25%@410nm; CE ~ 60%; P/V of SPE> 2.0;
- **≥2015**: **20**" prototypes with HDE performance;
- QE ~ 26%@410nm; CE ~100%; P/V of SPE> 3.0;
- → 2016: for the high QE improvement.

 the mass production prepare;

2.5.1 8"prototypes with normal performance--2013

- 2	3 2	(00/ 4	500h/	18.400	20.005/	原止
	-		- Ju		-	٠.,
			17	1		
			- 11			
RE THE	Sff	FOE	EG-	東 大	HERE	ite
游量 下降时间(2) 上升时间(3)	5ff 1.3ns 8.8ns	平均度 13.91 25.13		東大 72.2ms 126.9ms	総理職權 16,862ms 29,992ms	14tt 28 31

HV	Gain	P/V	Rise Time	Fall Time	Dark rate @1E7 Gain(0.25PE)
2100V	~1E7	~4	~1.3ns	~8.8ns	~3kHz

2.5.2 20"prototypes with normal performance--2014

Prototypes: Successful 8" and 20" prototypes with normal performance;

We could successfully produce the 8 / 20 inch MCP-PMT prototype for good SPE and QE

And better for CE of the MCP; Uniformity of CE, QE, TTS,

we also try to improve our design of the prototype.

Outline

- ➤ 1. The JUNO and MCP-PMT;
- > 2. The new design of the MCP-PMT prototypes;

the 4 π design; the 8 inch prototypes; the 20 inch prototypes;

→ 3. The High PDE MCP-PMT—2015;

the The performance of the 20 inch prototypes;

> 4. The Special Behaviors of the MCP-PMT;

the High CE; The large TTS; the aging behaviors;

> 3. The High PDE MCP-PMT--2015

20-inch Hamamatus PMT-Dynode Ellipsoidal Glass

20-inch IHEP-MCP-PMT-Ellipsoidal Glass

3.1 The QE of the Photocathode

20 inch Prototype	R12860	MCP-PMT
QE@410nm	~30%	~26%

3.2 Waveform of the Prototype

	Rise Time	Fall Time
R12860	~6.7ns	~17.7ns
MCP-PMT	~2.2ns	~10.2ns

3.3. The SPE of the Prototype;

	HV	Gain	P/V
R12860	1650V	~1.1E7	~3.7
MCP-PMT	1930V	~9.6E6	~5.6

Hamamatsu R12860

MCP-PMT

3.4. The TTS of the Prototype;

	HV	Gain	TTS @ top center
R12860	1650V	~1.1E7	~2.8ns
MCP-PMT	1930V	~9.6E6	~12ns

Hamamatsu R12860

MCP-PMT

3.5. The Dark count of the Prototype;

	HV	Gain	Dark rate @ 0.25PE
R12860	1650V	~1.1E7	~25kHz
MCP-PMT	1930V	~9.6E6	~ 30kHz

Hamamatsu R12860

MCP-PMT

3.6. The After Pulse Rate of the Prototype

	Time distribution	After Pulse Rate
R12860	4us, 17us	10%
MCP-PMT	4.5us	2.5%

3.7. The Relativity Detection efficiency of the Prototype

	HV	Gain	Relativity PDE
R12860	1650V	~1.1E7	100%
MCP-PMT	1930V	~9.6E6	110%

3.8 The performance of the 20 inch prototypes

Characteristics	unit	MCP-PMT (IHEP)	R12860 (Hamamatsu)
Electron Multiplier		МСР	Dynode
Photocathode mode		reflection+ transmission	transmission
Quantum Efficiency (400nm)	%	26 (T), 30 (T+R)	30(T)
Relativity Detection Efficiency	%	~ 110%	~ 100%
P/V of SPE		> 3	> 3
TTS on the top point	ns	~12	~3
Rise time/ Fall time	ns	R~2 , F~10	R~7 , F~17
Anode Dark Count	Hz	~30K	~30K
After Pulse Time distribution	us	4.5	4, 17
After Pulse Rate	%	3	10
Glass		Low-Potassium Glass	HARIO-32

Outline

- ➤ 1. The JUNO and MCP-PMT;
- 2. The new design of the MCP-PMT prototypes;

the 4 π design; the 8 inch prototypes; the 20 inch prototypes;

➤ 3. The High PDE MCP-PMT—2015;

the The performance of the 20 inch prototypes;

4. The Special Behaviors of the MCP-PMT;

the High CE; The large TTS; the aging behaviors;

4.1. The Transmission + Reflection QE of the Photocathode

Good situation:

- → Improve the total QE;
- → Improve the Detection Efficiency;

Bad situation:

- → Larger Dark count;
- → larger TTS;

CE = 60%

The p.e. into the channel directly ~60%

The Diameter of the MCP: 33mm; 50mm;

The Diameter of the Hole: 6um; 8um; 10um; 12um;

The Inclined Angle: 0°; 8°; 12°;

The Open Area Ratio: 60%; 77%;

The Depth of output electrode:.....

CE = 100%

The p.e. into the channel directly ~70%

The p.e. from the electrod indirectly ~ 30%

MCP: Large area PC (Rrf. + Tran.)

	Relativity DE
Dynode-PMT	100%
MCP-PMT	110%

Dynode: A mesh covering the dynode

MCP: Special MCP for CE~100%

4.2 Why the TTS is large?

The prototype

- --> with Trans. + Ref. PC for better QE;
- --> with special MCP for better DE;

But the TTS will be worse!

The p.e. from where?

- -->the Transmission Photocathode
- -->the Reflection Photocathode

The p.e. to where?

- -->to the channel of MCP directly
- -->to the electrode and then reflect to the MCP channel indirectly

The contribution to the TTS

- 1) The distance between the PC to the MCP;
- = = By adjusting the Electronic optical focusing
- ② The difference between the Trans. & Ref. PC;
- = = No way to adjusting; (for better QE)
- ③ The second electron emission part of the MCP;
- = = No way to adjusting; (for better DE)

4.2.2 The second electron emission part of the MCP (channel or electrode);

➤ With the contribution of the second electron from the electrode (40%), the spectrum of the TTS present several peaks, which made it's TTS worse.

4.2.3 How to improve the JUNO PMT's time resolution?

- optical coverage: 78%
 - \rightarrow 15,000 large PMTs (20") \rightarrow 75%
 - → 36,000 small PMTs (3") → 3% (double calorimetry + timing)

	TTS @ top center
R12860 (20")	~2.8ns
MCP-PMT(20")	~12ns
3" PMT	~1.5ns

4.3 The aging behavior of the Prototype;

- ➤ 2inch XP2020 (Reference PMT)
- ----Monitoring the stability of the light and electronics.
- > 20inch MCP81 (Test PMT)
- ----Monitoring the SPE; ----> the stability of Gain
- ----Monitoring the MPE (~1000p.e.) the stability of Gain
- ----Monitoring the pedestal; the stability of electronics;

- ➤ 8" MCP-PMT in 2014 with ~1000p.e. enhanced aging test,
- the Gain of the PMT changed to 80%@7C@1X10^7 with MPE;

- →20" MCP-PMT in 2016 with ~1000p.e.
 enhanced aging test,
- the Gain of the PMT changed to 90%@7C@1X10^7 with MPE;
- The aging behavior of the MCP better than before.

- ➤ 8" MCP-PMT in 2014 with ~1000p.e. enhanced aging test,
- ➤ the Gain of the PMT changed to 35%@14@1X10^7 with MPE;

- →20" MCP-PMT in 2016 with ~1000p.e.
 enhanced aging test,
- The Gain of the PMT changed to 80%@14C@1X10^7 with MPE;
- The aging behavior of the MCP better than before.

Characteristics	unit i	MCP-PMT (NNVC)
Detection Eff.(QE*CE*area)	%	27%, > 24%
P/V of SPE		3.5, > 2.8
LLS on the top point	115	°12, < 15
Rise time/ Fall time	ns	R~2 , F~12
Anode Dark Count	Hz	20K, < 30K
After Pulse Rate	%	1, <2
		238U:50
Radioactivity of glass	ppb	232Th:50
		40K: 20

30 pic/day for 2 years,

2016 **HQE Production line** bunch test sys

Mass production

2017-2018

Bunch test

2014-2015

20" prototype **Transmission** +reflection

2012-2013

5"(8") prototype **Transmission** +reflection

test in NNVT: MCP-PMT only test in JUNO: MCP-PMT

Base

HV

Electronics

2010-2011

2009 Design

Thank! 谢谢!

Thanks for your attention!

Any comment and suggestion are welcomed!

International Conference on Technology and Instrumentation in Particle Physics

MAY 22-26, 2017 | BEIJING, PEOPLE'S REPUBLIC OF CHINA

May 22-26,2017 Beijing;

X-PMT workshop

Dynode-PMT; MCP-PMT; Si-PMT; Gas-PMT; et.al

A visit to the **NNVT**, who produce the MCP-PMT for JUNO.

Thank! 谢谢!

If you are interesting about this workshop, please give me a e-mail.