Large PMT R&D in Japan

Yasuhiro NISHIMURA < ynisi @ icrr.u-tokyo.ac.jp > Shoei NAKAYAMA

ICRR), The University of Tokyo

- International Workshop on Next Generation Nucleon Decay and Neutrino Detectors - 5/Nov/2016

Large PMT applications in Japan

By Hamamatsu Photonics K.K.

Super-Kamiokande 1996-

Discovery of v oscillation

R3600 20" PMT

KamLAND(-Zen) 2002-

and for near future plan of Hyper-Kamiokande with improved photodetectors

5/Nov/2016

20" Photodetector R&D for Hyper-Kamiokande

5/Nov/2016

Box&Line PMT Performance

Confirmed sufficient performance in Hyper-K (Reported in NNN14,15)

Response in wide range

5/Nov/2016

5/Nov/2016

Dark rate in recent products

Dark rate (at 1.5mV) 0 0 0 0 0

for 42 days (19.Aug-1.Oct 2016)

5 latest samples

1 old PMT (2015)

30

25

7.6 kHz avg

at 1.5 mV thre.

35

Days

Still trying to reduce dark rate (20 kHz \rightarrow 10 kHz \rightarrow 8 kHz \rightarrow ...) 고····/ 말 Dark rate monitor

Dark rate was characterized by parameters to consider a good quality control in mass production.

What was improved during R&D?

- Dark count rate : Reduced from 20% to 8%, and still trying to reduce it.
- Quantum efficiency : Achieving 35% typ. from 30%
- Mechanical strength : Improved by design, established PMT cover

5/Nov/2016

Design and Confirmation

Safety measures

- 1. <u>Design and confirmation</u> of the PMT glass bulb
 - To minimize the single PMT implosion
- 2. <u>Screening</u> by the individual inspection in all products
 - Pre-selection by glass thickness, inspection of bulb glass quality, etc.
 - Quick pressure test before the installation
- 3. <u>Shockwave prevention</u> by the cover
 - In the very unlikely event of a single-PMT implosion, the cover significantly reduces the shockwave released outside
 - Eliminate the catastrophic chain reaction of PMT implosions completely

Concept of PMT cover

• Cover should protect outside PMTs of the cover without broken.

Usual case

Cover has small holes

PMT always exposed to the water pressure

Confirmation by 3 steps

PMT pressurized test

(and screening during construction because of individual difference of glass quality)

Unexpected implosion!

→ Cover pressurized, but strong enough to keep its shape Water flows in slowly

Slow

water flow

During implosion inside

Suppressed

Shocl

Cannot avoid

propagation

through cover

Large pressure shockwave doesn't arise outside the cover

Hydrostatic pressure test of cover All tests were done this year.

PMT implosion test with cover

5/Nov/2016

Cover design

t = 11mm @ center 15mm @ flange

SK acrylic cover t = 9mm @ center 13mm @ flange

Acrylic front : 6 kg Stainless back : 23 kg cf. PMT : 8 kg PMT buoyancy : -60 kg

 Establish at least one design for 60 m water tank
Optimized later

5/Nov/2016

Hydrostatic pressure test

Cover pressurized test

A set of the cover packed in a plastic bag was pressurized from outside. Tested two samples to 1.1MPa (=100 m water depth) and there were no damages.

 \rightarrow OK for 100 m water load

Confirmation of consistency with analysis

Buckling analysis

Tested more to validate the calculation.

Damaged as expected around 1.2-1.5 MPa, but not completely collapsed. (This part can be reinforced in improved design.)

Cover validation

5/Nov/2016

Large PMT R&D in Japan (Y.Nishimura, Univ. of Tokyo)

15

1st test in Feb-Mar 2016

Procedure of implosion test

- <u>Reproduction of shock wave from implosion</u> (w/o covers)
- Single implosion test (Only center PMT w/o cover) \rightarrow OK
- Chain implosion of 9 PMTs w/o cover \rightarrow OK
- Test of shock wave prevention cover (w/ cover at center PMT)
- 60m depth with (15mm Acrylic + 3mm stainless steel cover) x 3
 - O 1st Center PMT with cover
 - \odot 2nd & 3rd Center PMT with cover + surrounding 8 PMTs w/o cover \rightarrow OK

Confirmed that

1. reproduction of implosion

 $\rightarrow OK$

- 2. No damage on cover
- 3. Surrounding PMTs are safe
 - \rightarrow Cover was established.

• Same set of 3 tests in 80m water \rightarrow OK for all

5/Nov/2016

Reduction of pressure pulse

Tokyo)

0 T

18

R&D of Hybrid Photo-Detector

- A large junction capacitance (800 pF) of 20 mm
 avalanche diode (AD) is a difficulty to read a single PE.
- AD with reduced capacitance to 400 pF and fast low-noise preamplifier were successfully developed.

- Detection efficiency : ×1.8 higher than SK PMT, similar to Box&Line PMT, confirmed in measurement.
- Low after pulse less than 2%, much lower than Box&Line PMT 5/Nov/2016 Large PMT R&D in Japan (Y. Nishimura, Univ. of Tokyo)

HPD test in water

Prototype of waterproof 50 cm high-QE HPD for proof test (20 cm HPD already in tank)

>1.4 MPa tolerance in 3 tested samples

20

Same waterproof design as Super-K PMT (will be improved for HK)

Measured in water for 20 days without any problem *Clear 1 photo-electron (PE) signal* (8kV, in water, 70 m cable, 16°C) / Precise multi-PE counting

(8kV, in water, 70 m cable, 16°C) 2000s 20mV 1 PE 1 PE

Charge (200ns window) Charge (400ns) Pulse height (200ns window) Pulse height Aiming at proof test in the 200-ton tank

5/Nov/2016

In water

Activities in KamLAND-Zen

OD PMT replacement in KamLAND

47 of 50 cm "High-QE" Super-K PMTs were installed. (Replaced Kamiokande R1449 PMT used so far)

> 5 High-QE Super-K PMTs are also under test in EGADS 200 ton tank for HK since 2013.

In Tohoku University **PMT** (KamLAND OD) 50 → 20 /

Studies on light collection for KamLAND2-Zen

Geant4

Large

(右)の概略図

w/acrylic plate and mirror in edge for reflection

470mmΦ × D10mm 5/Nov/2016

Winston cone for 20" PMT made of PET+AI

 \rightarrow x1.8 enhancement Study with simulation and measurement Test of stability, background, etc.

Wavelength shifting plate Polystyrene w/ POPOP for test 8" R5912 PMT Prototype 図2シミュレーションに上ろ光子のドット

shimura. apan

About 1.5 factor in both measurement and simulation

Tokyo)

01

Univ.

10

20

10

udation level of Woter Tonk

 $20 \rightarrow 10$

 $20 \rightarrow HQE$

 $20 \rightarrow HQE$

 $55 \rightarrow 30$

 $20 \rightarrow$

20 cm (8") PMT for IceCube-Gen2

D-Egg design for IceCube-Gen2

High-QE 20 cm R5912-100 (Also High-QE 20 cm HPD was measured)

with better optical properties of glass and gel In Chiba University

Current PMT @ IceCube

8 inch D-Egg

Cathode uniformity measurement

5/Nov/2016

Measured with new glass+optical gel+magnetic shield

3rd test in high pressure at JAMSTEC, Kanagawa JP

(Japan Agency for Marine-Earth Science and Technology)

Conclusion

Box&Line PMT was established for Hyper-K.
Bulb and cover can be used for 60 m water height.
Optimization of cover for light weight and low cost design ongoing
Planning demonstration test using ~100 PMTs
With good production quality

HPD realized the better resolutions than 50 cm PMTs.
High efficiency, comparable with Box&Line PMT
Considering a possibility for Hyper-K by end of 2017
R&D for practical use is required (proof test, etc.)

5/Nov/2016

5/Nov/2016

arge PMT R&D in Japan (Y.Nishimura, Univ. of Tokyo)

25

Comparison to implosion simulation

 Measured peak pressures agree with expectation by a dynamic behavior simulation in the first order.

unit : MPa	no cover		with cover		
	data (above/bottom)	calc	data (front)	calc	front
60m	11.0/6.0	9.3	0.03	0.2	
80m	18.2/6.3	9.7	0.03	0.1	below/0cm

- Roughly consistent even in simple model without considering non-uniform acrylic thickness, glass collapse, effect of gravity/ buoyance, water flow through holes, …
 Simulation can be utilized for cover design.
- More optimization for further improvement is being tried.
 - Light weight with thin thickness, another material such as a full resin cover, reinforcing, PMT supporting structure, ...
 - Design based on simulation, and validation test finally

5/Nov/2016