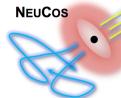
Overview of mass hierarchy, CP violation and leptogenesis.

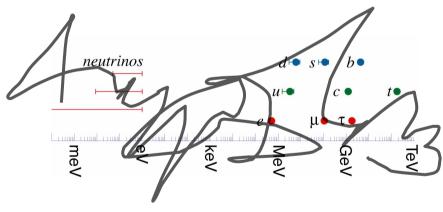
(Theory and Phenomenology)

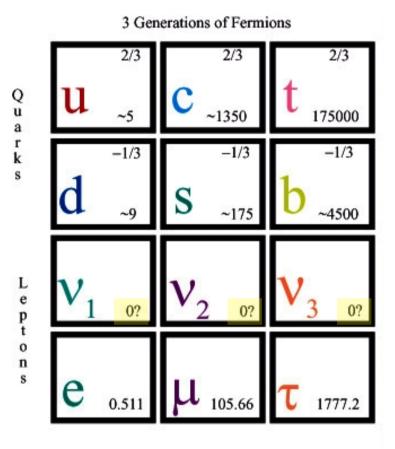
Walter Winter DESY


International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016)

3-5 November 2016 IHEP Beijing, China

Questions - instead of contents


- > Where do neutrino masses come from?
- > Where and how do mass ordering and CP phase enter?
- > Why are these parameters relevant?
- Is there a connection with baryogenesis?
- > What is the role of $0\nu\beta\beta$?
- > How can one measure MH and CP (phenomenology)?


Origin of neutrino mass: physics beyond the SM?

- Neutrinos in the Standard Model are massless
- > So what?

Introduce right-handed neutrino field v^c , Yukawa interaction ~ Y I H v^c forget about fine-tuning (Y)

Problem fixed!!!!!?

Masses are in MeV

Caveat: Neutrinos are electrically neutral ...

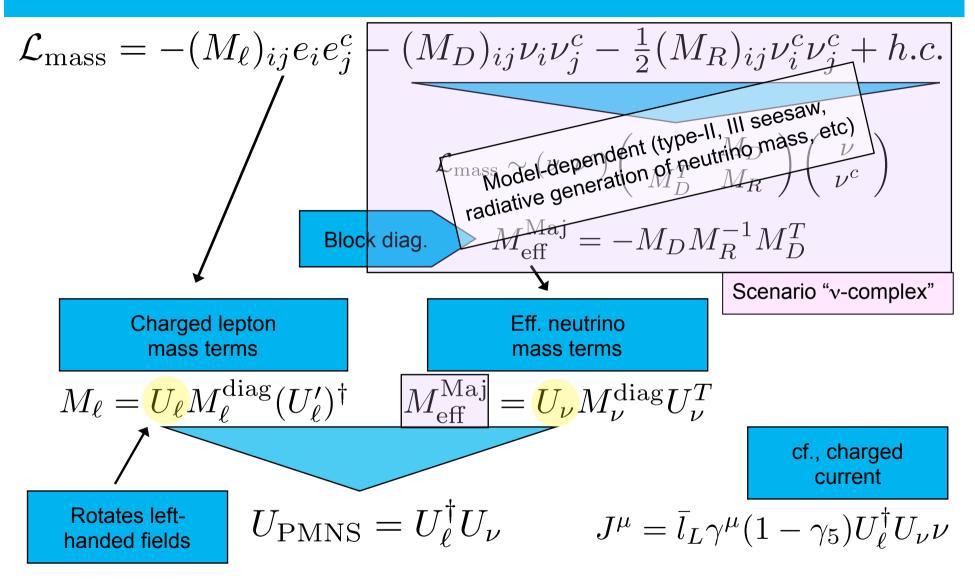
- Reminder from "model building 101", rule 1: If I introduce new fields, I have to write down all possible interactions allowed by the gauge symmetries given the field content
- > I can write a Majorana mass term ~ $M_R v^c v^c$ with the new field v^c because the neutrino is electrically neutral
- > Violates lepton number by two units
- Problem solution (1): get rid off this Majorana mass term

> Reminder from "model building 101", rule 2: If I want to forbid some interactions, I introduce/invent a (new) discrete symmetry and charge the fields under it

- Here we have such a symmetry already: lepton number is accidentally conserved in the Standard Model
- Promote lepton number from an accidental to a fundamental symmetry
- Physics BSM (kind of), but no leptogenesis

Scenario "v-simple"

What if there is a Majorana mass term?


- Problem solution (2): Accept that there is such a mass term
- Lepton number violation, clearly physics beyond the Standard Model
- Lagrangian for fermion masses after EWSB

$$\mathcal{L}_{\text{mass}} = -(M_{\ell})_{ij} e_i e_j^c - (M_D)_{ij} \nu_i \nu_j^c - \frac{1}{2} (M_R)_{ij} \nu_i^c \nu_j^c + h.c.$$
Scenario "v-compact"
aka Type-I seesaw
$$\mathcal{L}_{\text{mass}} \sim (\nu \ \nu^c) \begin{pmatrix} M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu \\ \nu^c \end{pmatrix}$$
Block diag.
$$M_{\text{eff}}^{\text{Maj}} = -M_D M_R^{-1} M_D^T$$

Fixes two other problems: smallness of neutrino mass and leptogenesis

$$m_{\nu} = \frac{m_D^2}{M_R} \leftarrow \begin{array}{c} ext{Other SM particles} \\ ext{Heavy partner} \end{array}$$

Generation of fermion mixings: Standard theory

Origin of MH and CP violation? Leptogenesis?

> Scenario "v-simnle"

ario "v-simple"
$$\int$$
 flavor model? Mass hierarchy

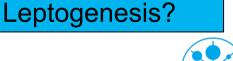
$$\mathcal{L}_{mass} = -(M_{\ell})_{ij} e_i e_j^c - (M_D)_{ij} \nu_i \nu_j^c \quad \text{CP violation}$$

$$M_{\ell} = U_{\ell} M_{\ell}^{\text{diag}} (U_{\ell}')^{\dagger} \quad M_{\nu} = U_{\nu} M_{\nu}^{\text{diag}} (U_{\nu}')^{\dagger}$$

$$U_{\text{PMNS}} = U_{\ell}^{\dagger} U_{\nu} \quad \text{No leptogenesis}$$

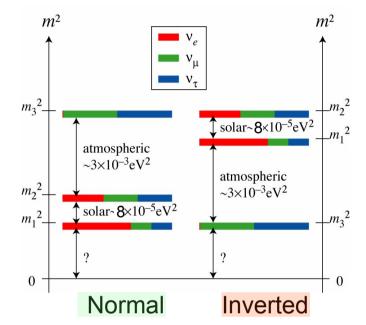
Structure from

flavor model?


Scenario "v-compact" (aka type-l seesaw)

$$\mathcal{L}_{\text{mass}} = -(\underline{M_{\ell}})_{ij} e_i e_j^c - (\underline{M_D})_{ij} \nu_i \nu_j^c - \frac{1}{2} (\underline{M_R})_{ij} \nu_i^c \nu_j^c + h.c.$$

... works even if heavy neutrinos at GeV scale, and together with a keV dark matter candidate Canetti, Drewes, Shaposhnikov, 2012

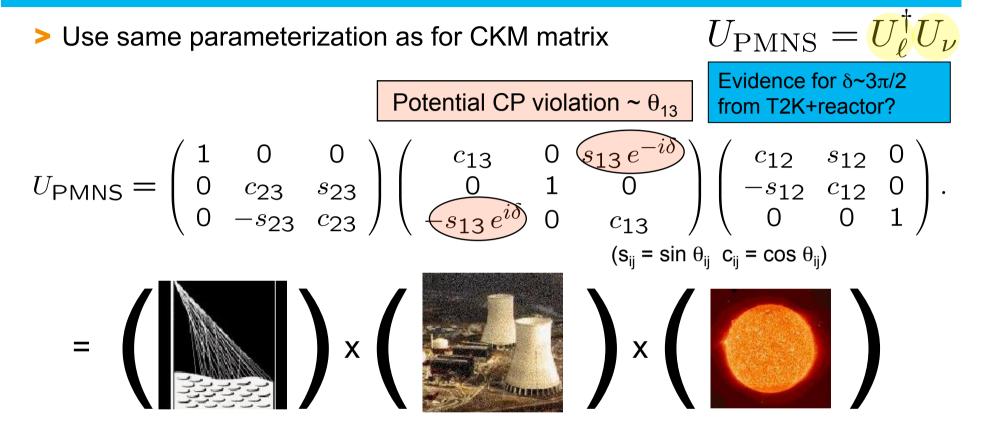

Scenario "v-complex" Origin of MH and CP violation depends on specific scenario; no universal discussion of leptogenesis possible

Leptogenesis!

Neutrino masses: Ordering versus Hierarchy

- The (atmospheric) mass ordering is unknown (normal or inverted)
- The absolute neutrino mass scale is unknown (< eV). Often parameterized by lightest neutrino mass: m₁ or m₃
- > In theory: three cases
 - Normal hierarchy: $m_1 < (\Delta m_{21}^2)^{0.5}$ (ordering: normal)
 - Inverted hierarchy: $m_3 << |\Delta m_{31}^2|^{0.5}$ (ordering: inverted)
 - (Quasi-)**Degenerate**: $m_1 \sim m_2 \sim m_3 >> |\Delta m_{31}^2|^{0.5}$ (ordering: normal or inverted)
- Lower bound on neutrino neutrino masses from ∆m₃₁² ~ 0.0024 eV²: Normal hierarchy: m₃ ~ 0.05 eV Inverted hierarchy: m₁, m₂ ~ 0.1 eV

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$


Why is the mass hierarchy so important?

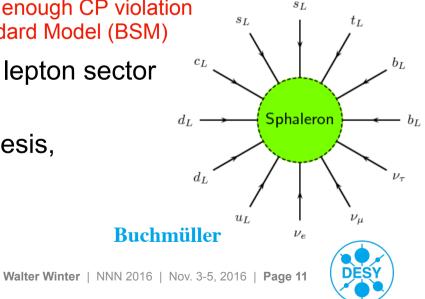
(simple example: effective Majorana mass, charged leptons diagonal)

- > Neutrino masses read, roughly (ε : hierarchy parameter) $M_{\nu}^{\text{diag}} \simeq m_3 \left(\begin{array}{c} \varepsilon^2 & & \\ & \varepsilon & \\ & & 1 \end{array} \right) \quad M_{\nu}^{\text{diag}} \simeq m_1 \left(\begin{array}{c} 1 & & \\ & 1 & \\ & & \varepsilon \end{array} \right) \quad M_{\nu}^{\text{diag}} \simeq m_3 \left(\begin{array}{c} 1 & & \\ & 1 & \\ & & 1 \end{array} \right)$ Hierarchy: normal Degenerate case Hierarchy: inverted $U_{\rm PMNS} \simeq \left(\begin{array}{ccc} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{array}\right)$ Neutrino mixings, roughly (limit $\theta_{13} \sim 0$) Tribimaximal > Consequences for $M_{\nu} = U_{\rm PMNS} M_{\nu}^{\rm diag} U_{\rm PMNS}^T$ (to leading order) $M_{\nu} \simeq \begin{pmatrix} \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & 1 & 1 \\ \varepsilon & 1 & 1 \end{pmatrix} \qquad M_{\nu} \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad M_{\nu} \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Degenerate case Hierarchy: inverted Hierarchy: normal
- Very different structure of neutrino mass matrix! Model discriminator (flavor models) Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 9

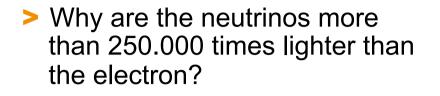
Neutrino mixings and leptonic CP violation

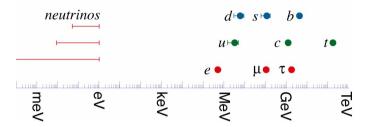
Pontecorvo-Maki-Nakagawa-Sakata matrix

- Neutrinos ⇒ Anti-neutrinos: U ⇒ U* (neutrino oscillations)
- > If neutrinos are their own anti-particles (Majorana neutrinos): U \Rightarrow U diag(1, $e^{i\alpha}$, $e^{i\beta}$) - do enter $0_V\beta\beta$, but not neutrino oscillations


Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 10

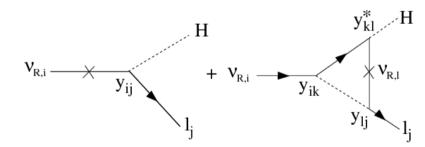
Why would one care about CP violation?


Baryogenesis = dynamical mechanism to create the matter-anti-matter asymmetry in the early universe from a symmetric state


> Three necessary conditions (Sakharov conditions):

- 1) B violation (need to violate baryon number) Need to create net baryon number
- Out-of-equilibrium processes
 Otherwise any created asymmetry will be washed out again (typically implied by expansion of the universe)
- 3) C and CP violation Particles and anti-particles need to "behave" differently Critical: the Standard Model does not have enough CP violation for that! Requires physics beyond the Standard Model (BSM)
- Addendum to 1): Can also come from lepton sector (sphalerons!)
- There are many theories for baryogenesis, e.g. electroweak baryogenesis, thermal leptogenesis, GUT baryogenesis etc

A simple and self-consistent scenario: "v-compact"



Seesaw mechanism: Neutrino mass suppressed by heavy partner, which only exists in the early universe?

$$m_{\nu} = \frac{m_D^2}{M_R} \leftarrow \frac{\text{Other SM particles}}{\text{Heavy partner}}$$

Decay of (thermally produced) M_R origin of matter-antimatter-asymmetry?

- > Often quoted experimental evidence:
 - CP violation? Test in neutrino oscillations
 - Requires Majorana nature of neutrino! Test in neutrinoless double beta decay (0vββ)

How solid is the evidence from such experimental tests?

Do we really test thermal leptogenesis with δ_{CP} ?

> The *pessimistic* perspective: There is no general connection

$$y = \frac{1}{v} \sqrt{M_R^{\text{diag}}} R \sqrt{M_\nu^{\text{diag}}} U_{\text{PMNS}}^{\dagger}$$
R: arbitrary,
R^TR=1
Regenesis = Not accessible x Measurable (Cases Theorem 2001)

15

12.5

10

7.5

5

2.5

0

2

3

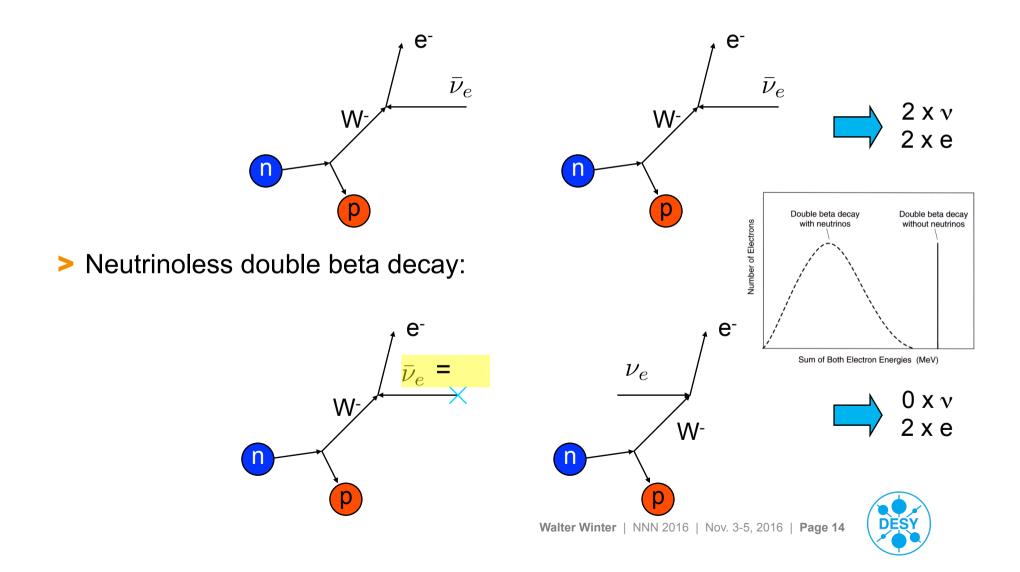
4

 $(Y_B/10^{11})$

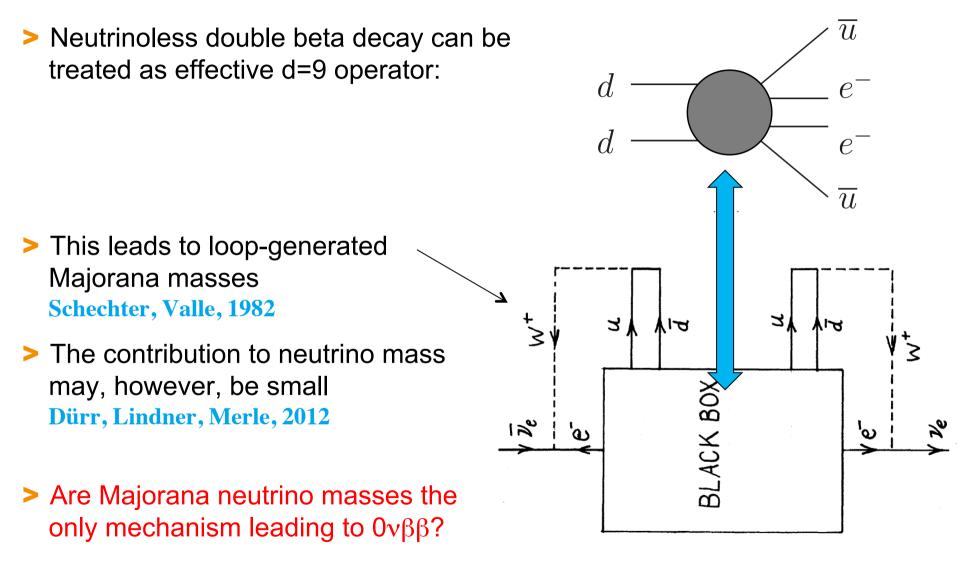
The minimalistic perspective: One can find parameters for which the CP violation from δ_{CP} is sufficient to generate the baryon asymmetry Pascoli, Petcov, Riotto, 2007

Lepto

- The self-consistent perspective: However, there is so far no convincing model to imply that
- The agnostic perspective:
 Why care, we would probably anyways not be able to test that...
 Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 13

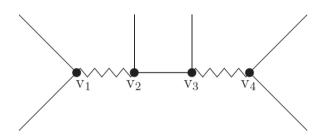

5

Thanks to


large $\theta_{13}!$

Signature of the Majorana nature: $0\nu\beta\beta$

> Two times simple beta decay:

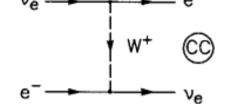

Does 0vββ imply Majorana neutrino masses?

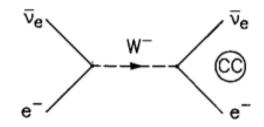
$0\nu\beta\beta$ mechanisms

There exists a long list of BSM tree-level models which can lead to 0vββ Bonnet, Hirsch, Ota, Winter JHEP 1303 (2013) 055

- The observation of 0vββ is a smoking gun signature for lepton number violation and physics BSM, but not (necessarily) for neutrino mass and for the neutrino mass ordering!
- Need direct measurements for mass and mass ordering

	Long Mediator $(U(1)_{em}, SU(3)_c)$					
#	Decomposition	Range?	$S \text{ or } V_{\rho}$	ψ	$S' \text{ or } V'_{o}$	Models/Refs./Comments
 1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1,1)	(0, 1)	(-1,1)	Mass mechan., RPV 58-60,
						LR-symmetric models 39,
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., <u>62,63</u>
			(+1, 8)	(0, 8)	(-1, 8)	64
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)	
			(+1, 8)	$(+4/3, \overline{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
		<i>(</i> -)	(+1, 8)	$(+4/3, \bar{3})$	$(+1/3, \overline{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(+1/3,\overline{3})$	RPV 58-60 , LQ 65,66
			(+1, 8)	(0, 8)	$(+1/3, \bar{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
0 1	(-1)(-)(-)(1-)	(1)	(+1, 8)	(+5/3, 3)	(+2/3, 3)	
2-ii- b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV 58-60, LQ 65,66
0	(1-)(-)(1)()	()	(+1, 8)	(0, 8)	(+2/3,3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \overline{3})$	(0, 1)	$(+1/3, \overline{3})$	RPV 58-60
2-iii-b	$(d\bar{z})(d)(\bar{z})(\bar{z}\bar{z})$		$(-2/3,\overline{3})$ $(-2/3,\overline{3})$	(0,8)	$(+1/3,\overline{3})$ $(+1/3,\overline{3})$	RPV [58-60]
2-111-D	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3) $(-2/3, \overline{3})$	(-1/3, 3) $(-1/3, \mathbf{\overline{6}})$	(+1/3, 3) $(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(-2/3, 3) (+4/3, 3)	(-1/3, 0) $(+1/3, \mathbf{\overline{3}})$	(+1/3, 3) $(-2/3, \overline{3})$	only with V_{ρ} and V'_{ρ}
9-1	(uu)(e)(e)(uu)		(+4/3, 3) (+4/3, 6)	(+1/3, 3) (+1/3, 6)	(-2/3, 3) (-2/3, 6)	only with v_{ρ} and v_{ρ}
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \overline{3})$ $(+4/3, \overline{3})$	(+1/3, 0) (+5/3, 3)	(-2/3, 0) (+2, 1)	only with V_{ρ}
0-11	(uu)(u)(u)(cc)		(+4/3, 6)	(+5/3, 3) (+5/3, 3)	(+2, 1) (+2, 1)	only with v_{ρ}
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3,3)	$(+4/3, \overline{3})$	(+2, 1) (+2, 1)	only with V_{ρ}
0 111	(aa)(a)(a)(cc)		$(+2/3, \overline{6})$	$(+4/3, \overline{3})$	(+2, 1) $(+2, 1)$	ϕ
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	$(-2/3, \overline{3})$	(0,1)	(+2/3,3)	RPV 58-60
	()()()	(-)	$(-2/3, \overline{3})$	(0, 8)	(+2/3, 3)	RPV 58-60
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		$(+4/3, \bar{3})$	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	$(+1/3, \bar{3})$	RPV 58-60
			(-1/3, 3)	(0, 8)	$(+1/3, \overline{3})$	RPV [58-60]
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	$(+1/3, \overline{3})$	$(-2/3, \overline{3})$	only with V'_{ρ}
			(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3})$	only with V'_{ρ}
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	

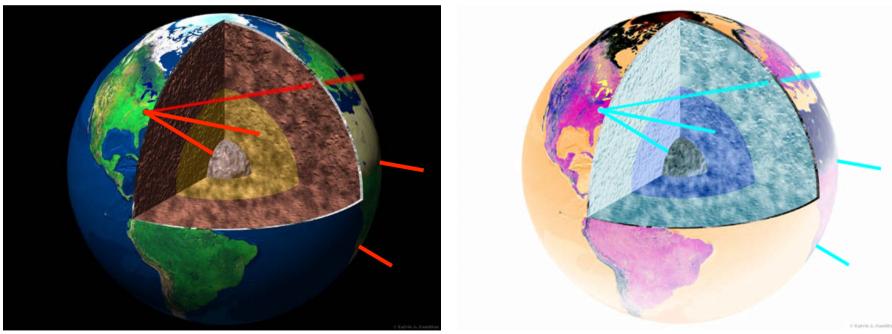

Measurement of the mass ordering and CP violation (phenomenology)

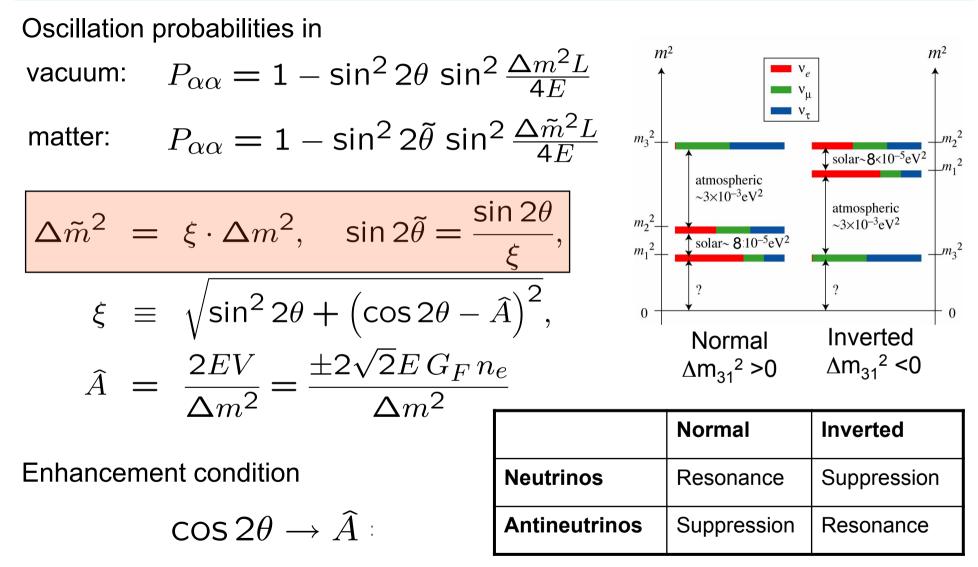


Matter effects in neutrino oscillations

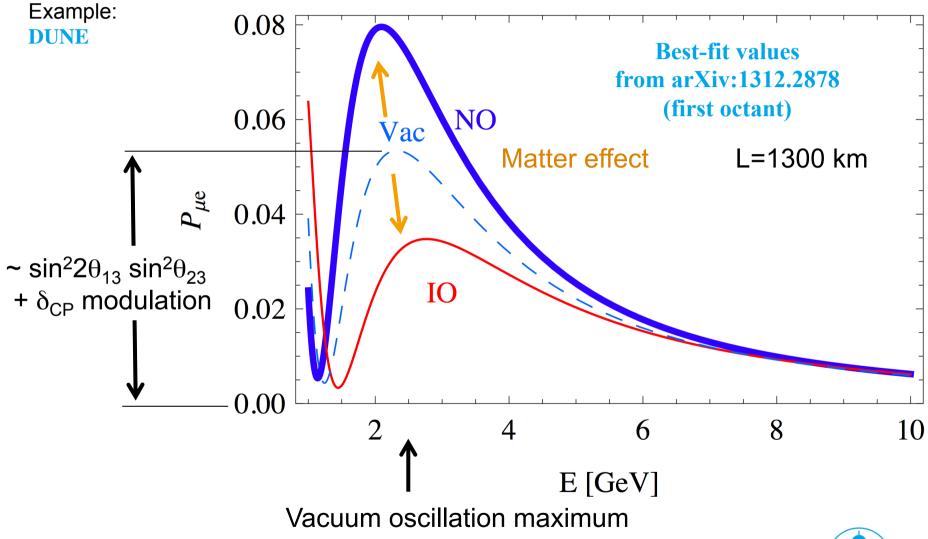
- Ordinary matter:
 electrons, but no μ, τ
- Coherent forward scattering in matter: Net effect on electron flavor
- Hamiltonian in matter (matrix form, flavor space):

$$\mathcal{H}(n_e) = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{pmatrix} U^{\dagger} + \begin{pmatrix} V(n_e) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(elemption of the second second

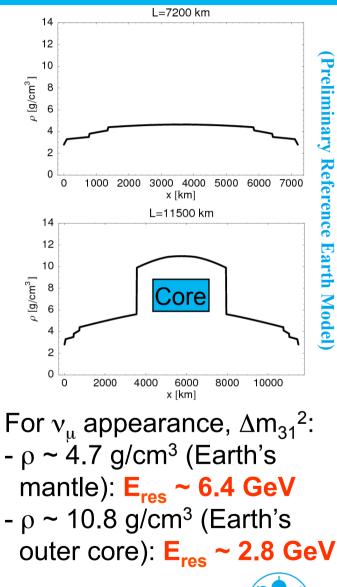

Y: electron fraction ~ 0.5 (electrons per nucleon)

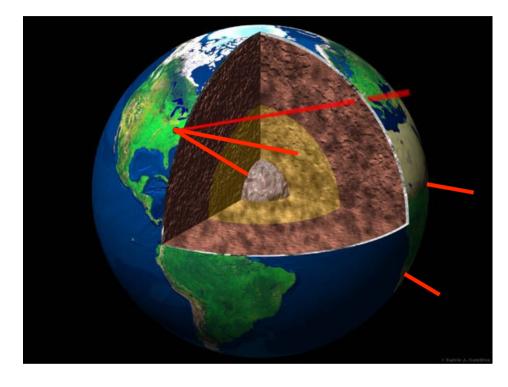

Extrinsic CP violation

- Matter effects violate CP and even CPT "extrinsically"
- Consequence: Obscure extraction of intrinsic CP violation

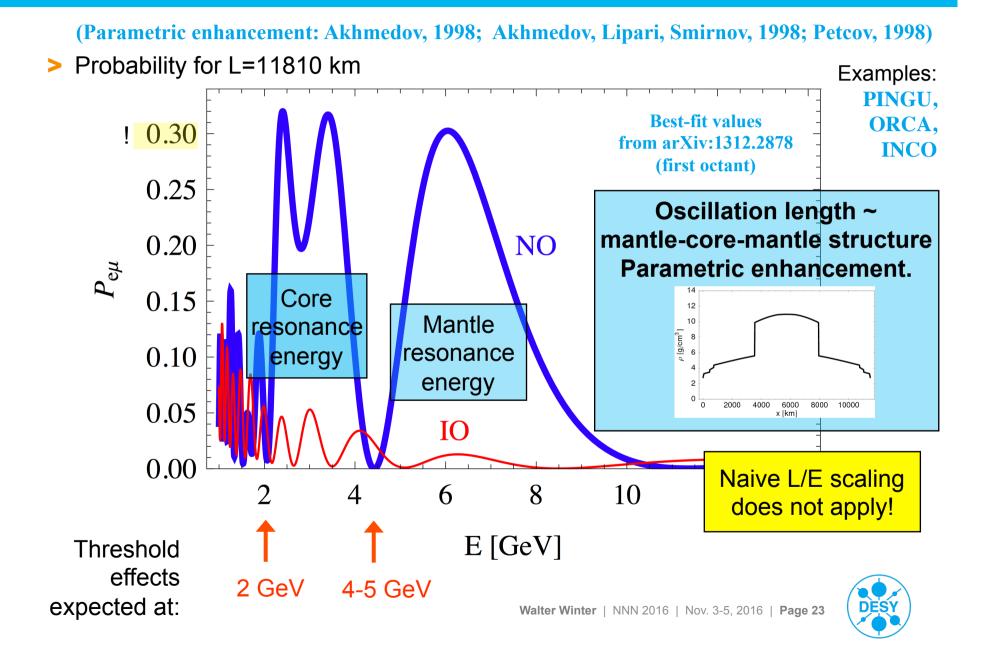


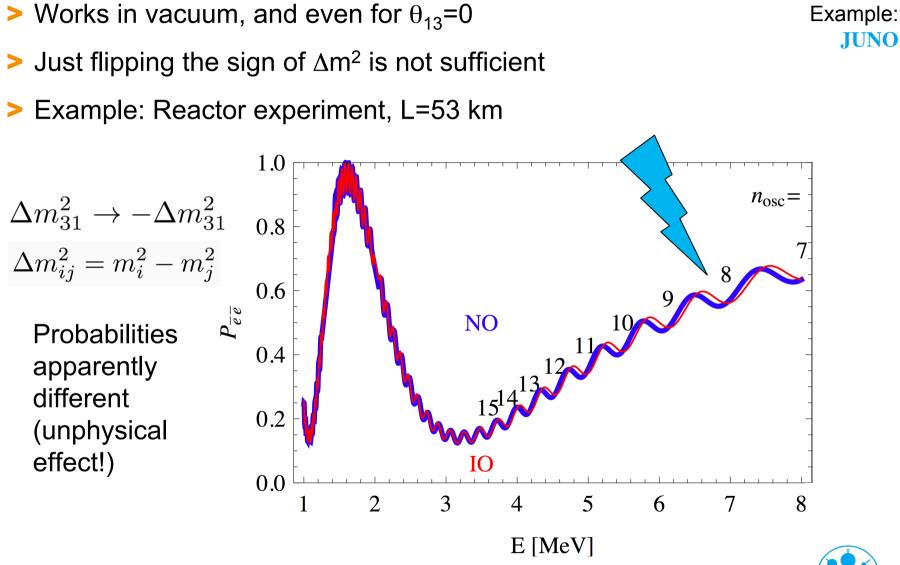
Parameter mapping ... for two flavors, constant matter density


Long baseline experiments (up to first vacuum osc. maximum)


Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 21

Matter profile of the Earth ... as seen by a neutrino

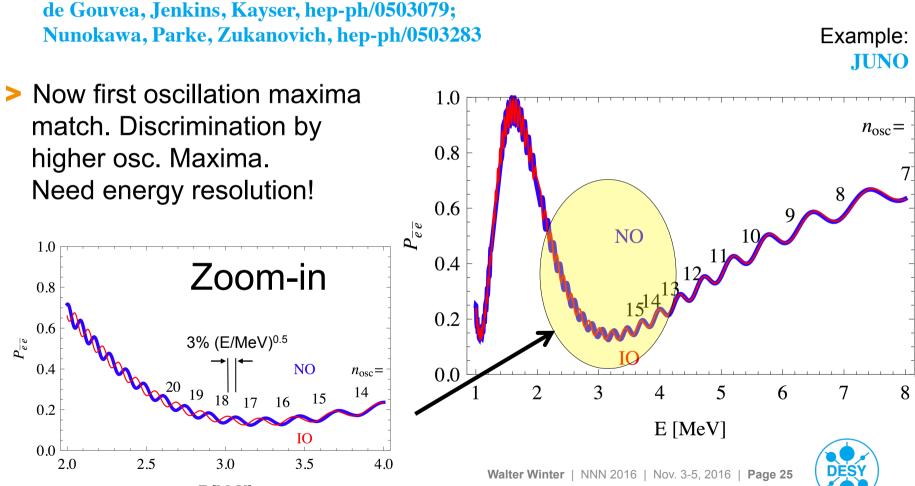

Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 22


Resonance energy (from $\hat{A} \to \cos 2\theta$): $E_{\text{res}} [\text{GeV}] \sim 13200 \cos 2\theta \frac{\Delta m^2 [\text{eV}^2]}{\rho [\text{g/cm}^3]}$

DESY

Mantle-core-mantle profile

Alternative method: Disappearance probabilities

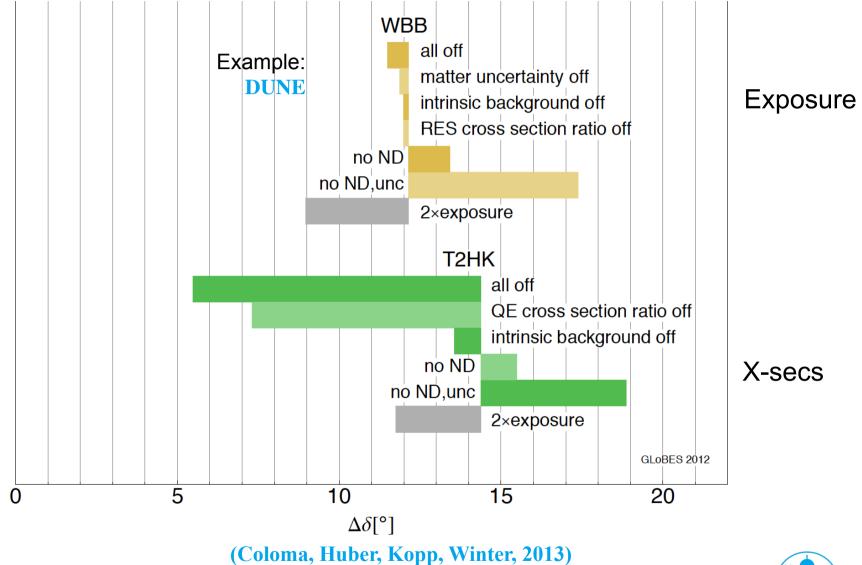


Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 24

Alternative method: Disappearance probabilities

> The disappearance Δm^2 depends on the channel. Consequence e.g. $|\delta m_{\text{eff}}^2|_e - |\delta m_{\text{eff}}^2|_\mu = \pm \delta m_{21}^2 (\cos 2\theta_{12} - \cos \delta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$

Measurement of CP violation: long-baseline exps $P_{e\mu} \simeq \sin^2 2\theta_{13} \frac{\cos^2 \theta_{23}}{\sin^2 \theta_{23}} \frac{\sin^2 [(1 \pm \widehat{A})\Delta]}{(1 \pm \widehat{A})^2} \qquad \alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}, \ \Delta \equiv \frac{\Delta m_{31}^2 L}{4E}, \ \widehat{A} \equiv \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2}$ $= \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin \delta_{CP}}{\sin \delta_{CP}} \sin(\Delta) \frac{\sin(\widehat{A}\Delta) \sin[(1 \pm \widehat{A})\Delta]}{\widehat{A}} \frac{\sin[(1 \pm \widehat{A})\Delta]}{(1 \pm \widehat{A})}$ $+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\cos \delta_{CP}}{\cos \delta_{CP}} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin[(1 \pm \hat{A})\Delta]}{\hat{A}} \frac{(1 \pm \hat{A})\Delta}{(1 \pm \hat{A})}$ + $\alpha^2 \frac{\sin^2 \theta_{23}}{\cos^2 \theta_{23}} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$ > <u>Antineutrinos</u>: $P_{\overline{e}\overline{\mu}} = P_{e\mu}(\delta_{CP}, \rightarrow -\delta_{CP}, \widehat{A} \rightarrow -\widehat{A})$ > Silver: $P_{e\tau} = P_{e\mu}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$ Examples: > Platinum, T-inv.: $P_{\mu e} = P_{e\mu}(\delta_{CP}, \rightarrow -\delta_{CP})$ **T2HK** DUNE


(Cervera et al. 2000; Freund, Huber, Lindner, 2000; Akhmedov et al, 2004)

Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 26

NuFact

The measurement of δ_{CP} : Challenges

Walter Winter | NNN 2016 | Nov. 3-5, 2016 | Page 27

Summary and conclusions

- Where does neutrino mass come from? Scenarios "v-simple", "v-compact", "v-complex": "v-compact" (type-I seesaw) often considered as the leading paradigm in terms of complexity vs. no of problems fixed (but perhaps not the simplest ...)
- Where do mass ordering and CP phase enter? (Yukawa) Couplings, possibly with structure from flavor symmetries
- > Why are these parameters relevant?
 - Mass hierarchy: Flavor symmetry, interpretation for leptogenesis
 - Mass ordering: Interpretation of $0\nu\beta\beta$, supernova neutrinos, neutrino oscillations
 - CP violation: Leptogenesis
- > Is there a connection with leptogenesis? Not in general. But: One can find a scenario where the δ_{CP} -effect is sufficient
- > What is the role of $0\nu\beta\beta$?

Test of lepton number violation and physics BSM. Interpretation in terms of Majorana neutrino contribution requires additional input