Recent results and outlook for the NOvA experiment

Ryan Patterson Caltech

NNN16 Beijing

November 4, 2016

Oscillation channels: $\nu_{\mu} \rightarrow \nu_{e}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ $\nu_{\mu} \rightarrow \nu_{\mu}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$

- ν mass hierarchy ?
- θ_{23} octant ? (ν_3 flavor mix)
- Allowed range of δ_{CP} ?
- Precision measurements of $\sin^2 \theta_{23}$ and Δm_{32}^2 .
- Over-constrain the system (*Deviations from vSM*?)

Also ...

- Sterile neutrinos, *CPT*v, NSI, and other exotica
- Supernova neutrinos
- Neutrino-nucleus scattering at Near Detector

Ryan Patterson, Caltech

Wisconsin

Lake Michigan

• Milwaukee

Fermilab

Chicago

Fermilab Neutrino Complex

Long shutdown in 2012–2013

Repurpose Recycler Ring for injection, reduced cycle time

2016 shutdown ending now \rightarrow 700 kW operation

4.7×10²⁰ p.o.t. delivered in FY16 $\rightarrow a NuMI record$

Data shown today represents: 6.05×10²⁰ protons-on-target*

 \rightarrow 17% of currently approved exposure

* As normalized to full-sized Far Detector. Actual FD size varied during commissioning and early running.

NOvA detectors

<u>A NOvA cell</u>

μ s exposure of the Far Detector

Time-zoom on 10 μ s interval during NuMI beam pulse

Ryan Patterson, Caltech

NNN16

Close-up of neutrino interaction in the Far Detector

Vertexing:

Tracking:

Ryan Patterson, Caltech

NNN16

Ryan Patterson, Caltech

NNN16

Checking energy scale

 $\mu dE/dx$, various positions/angles Michel electron energy (μ decay) bremsstrahlung energy

hadronic shower hits

ν_{μ} disappearance

- Identify contained ν_{μ} CC events in each detector
- Measure their energies
- Extract oscillation information from differences between the Far and Near energy spectra

Muon kinematics

98.4% pure sample in Near Detector

muon energy (from range)

Excellent agreement with MC simulation across several decades of rate

Ryan Patterson, Caltech

neutrino direction

hadronic shower energy (calorimetric)

reconstructed neutrino energy: $E_{\nu} = E_{\mu} + E_{had}$

Observed E_{ν} spectrum in the ND \Rightarrow **Predicted** E_{ν} spectrum in the FD

NOvA Preliminary

FD ν_{μ} CC candidates: example event distributions

All NOvA Preliminary

Ryan Patterson, Caltech

FD energy spectrum

NOvA Preliminary

Clear observation of v_{μ} disappearance

Oscillation fit for Δm_{32}^2 and θ_{23}

(syst. uncertainties included in fit via nuisance parameters)

(MINOS closed at 3.8%)

Systematic uncertainties still subordinate. Top systs. are those related to **energy calib**. Previously on top: **hadronic modeling**. (*Continued reductions anticipated...*) Many **analysis upgrades** under development: *improved selections, energy resolution binning*

ν_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to **predict beam backgrounds** in the Far Detector
- Interpret any **Far Det. excess** over predicted backgrounds as v_e appearance

ν_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to **predict beam backgrounds** in the Far Detector
- Interpret any **Far Det. excess** over predicted backgrounds as v_e appearance

Identifying ν_e CC events

Three sophisticated event ID algorithms developed on NOvA^{1,2,3}

Primary algorithm¹ for latest results based on **recent advancements** in the fields of **computer vision** and **deep learning**

 \rightarrow convolutional neural networks

Highly optimized training for convolution kernels and connections in deep network \rightarrow *Inception/GoogLeNet* and *Caffe* frameworks⁴

¹ A. Aurisano et al., JINST **11**, P09001 (2016)

² J. Bian, arXiv:1510.05708 (2015); E. Niner thesis, Indiana U (2015); K. Sachdev thesis, UMN (2015)

³ C. Backhouse and R. B. Patterson, NIM A 778, 31 (2015)

⁴ C. Szegedy et al., arXiv:1409.4842 (2014); Y. Jia et al., arXiv:1408.5093 (2014)

In the Near Detector...

Ryan Patterson, Caltech

NNN16

Checking signal efficiency

Effects from hadronic modeling?

- → Replace *muons* with simulated *electrons* in ν_{μ} CC events (preserves hadronic piece of event)
- → CVN efficiency agrees within 1% between data and simulation

EM shower modeling?

Isolate bremsstrahlung showers in FD cosmic ray data

CVN classifier **matches well** between data and simulation

Checking signal efficiency

Effects from hadronic modeling?

→ Replace *muons* with simulated *electrons* in ν_{μ} CC events (preserves hadronic piece of event)

→ CVN efficiency agrees within 1% between data and simulation

EM shower modeling?

Isolate bremsstrahlung showers in FD cosmic ray data

CVN classifier **matches well** between data and simulation

FD expectations...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

→ Strong dependence on δ and ν mass hierarchy

 $\rightarrow P \propto \sin^2 \theta_{23}$ [approx.]

Total prediction:

~17 to 42 v_e candidates (depending on osc. pars.)

Includes 8.2 background (~independent of osc. pars.)

Syst. uncertainty: ±5% signal ±10% background

FD expectations...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

→ Strong dependence on δ and ν mass hierarchy

 $\rightarrow P \propto \sin^2 \theta_{23}$ [approx.]

Total prediction:

~17 to 42 v_e candidates (depending on osc. pars.)

Includes 8.2 background (~independent of osc. pars.)

Syst. uncertainty: ±5% signal ±10% background

NOvA Preliminary

In **non-maximal mixing** scenario, **antineutrino data** critical to run plan

FD data

Non-standard interactions

Monopole searches

NOvA Preliminar

Outlook

- NOvA operating beautifully, returning from shutdown this month
 - Neutrino mode until ~spring, then antineutrino mode
- Below: sensitivity vs. time assuming...
 - currently favored osc. parameters *(lower/upper octant ↔ left/right panel)*
 - current analysis techniques (several improvements in the works!)
 - modestly improved systematic uncertainties
 - 6×10^{20} p.o.t./yr, with a balance of $\nu/\bar{\nu}$ in out-years
- In the very near term (c. 2018/2019) under above assumptions:
 - wrong hierarchy rejection at >95% C.L.
 - wrong octant rejection at >95% C.L.
 - max-mix rejection at $>3\sigma$

