

Hyunkwan Seo for the RENO Collaboration Seoul National University

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors

IHEP, Beijing, China, Nov. 3-5, 2016

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(8 institutions and 40 physicists)

- Chonnam National University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

■ Total cost: \$10M

Start of project : 2006

 The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

Reactor Neutrino Oscillations

Detection of Reactor Antineutrinos

RENO Detector

■ 354 ID +67 OD 10" PMTs

■ Target: 16.5 ton Gd-LS, R=1.4m, H=3.2m

■ Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m

■ Buffer: 65 ton mineral oil, R=2.7m, H=5.8m

■ Veto: 350 ton water, R=4.2m, H=8.8m

RENO Data-taking Status

- Data taking began on Aug. 1, 2011 with both near and far detectors.
 (DAQ efficiency: ~95%)
- A (220 days): First θ₁₃ result
 [11 Aug, 2011~26 Mar, 2012]
 PRL 108, 191802 (2012)
- B (403 days): Improved θ₁₃ result
 [11 Aug, 2011~13 Oct, 2012]
 NuTel 2013, TAUP 2013, WIN 2013
- C (~500 days): New result

 Shape+rate analysis (θ₁₃ and |Δm_{ee}² |)
 [11 Aug, 2011~21 Jan, 2013]
- → Sterile neutrino search and updated n-H analysis in progress
- Total observed reactor neutrino events as of today (1500 days)
 ~ 1.5M (Near), ~ 0.15M (Far)

New Results from RENO

- New measured value of θ_{13} from rate-only analysis using ~50 0 days of data (Aug. 2011 ~ Jan. 2013)
- Observation of an excess at ~5 MeV in reactor neutrino spect
 rum
- Observation of energy dependent disappearance of reactor n eutrinos to measure Δm_{ee}^2 and θ_{13}

"Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment"

(published in PRL 116, 211801, 2016)

- Details can be found there & PRD to be submitted soon
- Independent measurement of θ_{13} with n-H for a delayed signal (additional background reduction in progress)
- Obtained result from sterile neutrinos search

Measured Spectra of IBD Prompt Signal

Near Live time = 458.49 days # of IBD candidate = 290,775 # of background = 8,041 (2.8 %) Far Live time = 489.93 days # of IBD candidate = 31,541# of background = 1,540 (4.9 %)

IBD Candidates & Backgrounds

	Near	Far
DAQ live time (days)	458.49	489.93
IBD candidates	290755	31541
Total BKG rate (/day)	17.54± 0.83	3.14± 0.21
IBD rate (/day) after BKG subtraction	616.67± 1.44	61.24± 0.42

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction.
- Accurate measurement of thermal power by reactor neutrinos¹²

New θ_{13} Measurement by Rate-only Analysis

Rate-only new result

$$\sin^2 2\theta_{13} = 0.087 \pm 0.009(\text{stat.}) \pm 0.007(\text{syst.})$$

By minimizing
$$C^2 = \frac{\left(O^{F/N} - T^{F/N}\right)^2}{\left(U\right)^2} + Pull_Terms$$

Energy Calibration from γ-ray Sources

- Non-linear resonse of the scintillation energy is calibrated using γ-ray sources.
- The visible energy from γ-ray is corrected to its corresponding positron energy.

Fit function : $E_{vis}/E_{true} = a - b/(1 - \exp(-cE_{true} - d))$

B12 Energy Spectrum (Near & Far)

Electron energy spectrum from β-decays from ¹²B and ¹²N,
 which are produced by comic-muon interactions.

Good agreement between data and MC spectrum!

Observation of an excess at 5 MeV

In Neutrino 2014, RENO showed the 5 MeV excess is from reactor neutrinos.

The 5 MeV Excess is there!

In 2014, RENO showed the 5 MeV excess is from reactor neutrinos.

Observation of an excess at 5 MeV

RENO 1400 days of data (Aug. 2011 – Sep 2015) (Preliminary)

The measured near spectrum is compared with prediction using χ^2 -square test.

Fraction of 5 MeV excess: 2.46 ± 0.27 (%)

Significance of the 5 MeV excess: $^{9}\sigma$

Correlation of 5 MeV Excess with Reactor Power

PRL 116, 211801, 2016

5 MeV excess
has a clear
correlation
with reactor
thermal power!

The 5 MeV excess comes from reactors!

Correlation of 5 MeV excess with ²³⁵U isotope fraction

(Preliminary)

²³⁵U fraction corresponds to freshness of reactor fuel

Measurement of Absolute Reactor Neutrino Flux

*Prediction is corrected for three flavor neutrino oscillation

	Data / Prediction (Huber + Mueller)	Flux weighted baseline at near
RENO (500 days)	0.944 ± 0.021	411 m

Short baseline measurement (<100 m)

10

0.6

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

 10^{2}

Model Unc.

 10^{3}

Distance (m)

Far/Near Shape Analysis for |∆m_{ee}²|

Minimize X² Function

$$\sum_{P=before,After} \left\{ \sum_{i=1 \sim N_b} \frac{\left(\frac{N_{obs}^{F,P,i}}{N_{obs}^{N,P,i}} - \frac{N_{Exp}^{F,P,i}}{N_{Exp}^{N,P,i}}\right)^2}{\left(U_i\right)^2} \right\} + Pull_Terms$$

$$U_{i} = \frac{N_{obs}^{F,i}}{N_{obs}^{N,i}} \cdot \sqrt{\frac{N_{obs}^{F,i} + N_{bkg}^{F,i}}{(N_{obs}^{F,i})^{2}} + \frac{N_{obs}^{N,i} + N_{bkg}^{N,i}}{(N_{obs}^{N,i})^{2}}}$$

Results from Spectral Fit

Rate+shape new results

$$\sin^2 2q_{13} = 0.082 \pm 0.009(\text{stat.}) \pm 0.006(\text{syst.})$$

$$|Dm_{ee}^2| = 2.62_{-0.23}^{+0.21} (\text{stat.})_{-0.13}^{+0.12} (\text{syst.}) (10^{-3} eV^2)$$

(± 10 %)

Observed L/E Dependent Oscillation

arXiv:1511.05849.v2

$$P(\overline{n}_e \to \overline{n}_e) \approx 1 - \sin^2 2q_{13} \sin^2 \left(Dm_{ee}^2 \frac{L}{4E_n} \right)$$

Projected Sensitivity of θ_{13} & $|\Delta m_{ee}^2|$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 10\%) \qquad \pm 0.005 \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 10\%) \qquad \pm 0.15 \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (\pm 6\%)$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (5 \, \text{years of data})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (6 \, \% \, \text{precision})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (6 \, \% \, \text{precision})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (6 \, \% \, \text{precision})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{-0.26}) \times 10^{-3} \, \text{eV}^{2} \qquad (6 \, \% \, \text{precision})$$

$$|\Delta m_{ee}|^{2} = (2.62^{+0.24}_{$$

n-H IBD Analysis

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.

Poster: "Measurement of θ_{13} using RENO reactor neutrino events with neutron capture on hydrogen" (C. D. Shin)

Delayed spectrum and capture time

- Delayed signal peak:~2.2 MeV
- Mean coincidence time:
 ~ 200 μs

Far and near data match very well

θ₁₃ Measurement with n-H

Data set: 2011/08 ~ 2013/01 (~500 days)

Preliminary rate only analysis results is

 $\sin^2 2\theta_{13} = 0.086 \pm 0.012 \text{(stat.)} \pm 0.015 \text{(syst.)}$

	Uncertainty
Detection efficiency	0.59%
Thermal power	0.5 %
Isotope fraction	0.7 %
Background	Near : 0.2% Far : 0.8%

Light Sterile Neutrino Search Results

Summary

- New results are presented
 - More precise measurement of θ_{13} value ($\pm 12\%$)
 - Clear observation of 5 MeV excess
 - First measurement of ∆m_{ee}²
 - Absolute antineutrino flux measurement (R = 0.944 +- 0.021)

 $(\pm 10\%)$

- Independent measurement of θ_{13} with n-H
- Excluded region for sterile neutrinos

Thanks for your attention!