

INIVERSIT

Cosmogenic backgrounds in neutrino detectors

Shirley Li The Ohio State University

NNN16, Beijing

What are cosmogenic backgrounds?

Backgrounds induced by cosmic rays and their products

Current rejection methods

Example: Super-K

Muon rate: 2 Hz vs. Isotope lifetime: ~ 10 s

Remove 90% backgrounds Lose 20% signals Much better background reduction is possible

Simulations are improving

Packages: FLUKA, GEANT4 A factor of ~ 2 accuracies in ¹²C & ¹⁶O

		GEANT4 Model III	GEANT4 Model IV	${f F}$ LUKA	Borexino	-			
Borexino 2013			$\langle \mathbf{E}_{\mu}\rangle = 283\pm19\mathrm{GeV}-\!\!-$			Isotope	Y_i in water	Expected	[13]
	Isotopes	Yield $[10^{-7} (\mu {\rm g/cm^2})^{-1}]$			$^{12}\mathrm{B}$	$11.7 \pm 0.1 \pm 0.6$	12		
	12 N	1.11 ± 0.13	3.0 ± 0.2	0.5 ± 0.2	< 1.1	12		1.0	Super-K
	$^{12}\mathbf{B}$	30.1 ± 0.7	29.7 ± 0.7	28.8 ± 1.9	56 ± 3	12 IN	$1.6 \pm 0.1 \pm 0.1$	1.3	
	${}^{8}\mathbf{He}$	< 0.04	0.18 ± 0.05	0.30 ± 0.15	< 1.5	^{16}N	$23.4 \pm 1.9 \pm 1.7$	18	
	9 Li	0.6 ± 0.1	1.68 ± 0.16	3.1 ± 0.4	2.9 ± 0.3	11 D -	<10.0	0.01	
	${}^{8}\mathbf{B}$	0.52 ± 0.09	1.44 ± 0.15	6.6 ± 0.6	14 ± 6	Be	De <10.0	0.81	
	${}^{6}\mathbf{He}$	18.5 ± 0.5	8.9 ± 0.4	17.3 ± 1.1	38 ± 15	⁹ Li w/o n-tag	$0.5 {\pm} 0.2 {\pm} 0.2$	1.9) 2016) 8
	8 Li	27.7 ± 0.7	7.8 ± 0.4	28.8 ± 1.0	7 ± 7	$9\mathbf{T}$; \mathbf{m}/\mathbf{n} to \mathbf{r}	$0.51 \pm 0.07 \pm 0.00$	1.0	
	${}^{9}\mathbf{C}$	0.16 ± 0.05	0.99 ± 0.13	0.91 ± 0.10	< 16	LI W/ II-tag	$LI w/II-tag 0.51 \pm 0.07 \pm 0.09 I.$	1.9	
	$^{11}\mathbf{Be}$	0.24 ± 0.06	0.45 ± 0.09	0.59 ± 0.12	< 7.0	$^{8}\mathrm{He}/^{9}\mathrm{C}$	< 0.9	1.1	
	$^{10}\mathbf{C}$	15.0 ± 0.5	41.1 ± 0.8	14.1 ± 0.7	18 ± 5	⁸ I; ^{/8} B	${}^{8}\text{Li}/{}^{8}\text{B},$ $4.9\pm0.2\pm0.2$ 18	18.8	
	11 C	315 ± 2	415 ± 3	467 ± 23	886 ± 115	\mathbf{D} , \mathbf{D} , \mathbf{D} ,		10.0	
	Neutrons	Yield $[10^{-4} (\mu {\rm g/cm^2})^{-1}]$			$g/cm^2)^{-1}$]	¹⁰ C	<3.9	0.82	
		3.01 ± 0.05	2.99 ± 0.03	2.46 ± 0.12	3.10 ± 0.11				

➢ More studies with heavier materials
EXO-200 Zhu et al., in prep

The puzzle

Muon light profile

Correlation with cosmogenics

Understanding the production mechanism

1. Muons produce showers

Li & Beacom 2015

Shower rate is low, ~ 0.5 per Super-K muon

1. Muons produce showers

Shower profile

2015

Shower length is small, ~ 5 m

1. Muons produce showers

Shower length is small, ~ 5 m

2. Showers produce isotopes

Isotope parent spectra

E.M. vs. hadronic showers

E.M. showers have γ

Li & Beacom 2014, 2015

2. Showers produce isotopes

Isotope parent spectra E.M. vs. hadronic showers

E.M. showers have γ

Li & Beacom 2014, 2015

Less volume, less frequent cut => longer rejection time

Ways to identify showers Light

Measured shower profile

Photon hit pattern

Ways to identify showers Light

Measured shower profile New reconstruction method

Ways to identify showers

Neutron captures

Neutron multiplicity

Using neutron captures to tag showers

More efficient way to tag hadronic showers

Conclusions

- Cosmogenic backgrounds are critical for solar (8B, pep, CNO), reactor, 0vββ studies
- The main difficulty: no efficient way to tag the background-producing muons
- New opportunities arise: isotopes are made in muon-induced showers
- Need to identify showers better: light, neutron capture

Thank you!

Back up

Current rejection methods

Example: Borexino Three-Fold Coincidence

Borexino 2014

Studies with more materials

More data provided to model hadronic interactions