Solar Neutrino Oscillations

NNN16 Beijing, 3 Nov 2016

....

Michael Wurm (Uni Mainz) for the BOREXINO collaboration

Scientific Motivation

JGU

Exploration of the solar interior

- fusion rates (pp,CNO)
- solar metallicity

Investigation of neutrino oscillations

- 3-flavor oscillations
- matter effects
- non-standard phenomena

. . .

Solar neutrino spectrum

 based on Standard Solar Model (SSM) (SSM uncertainties on flux)

Michael Wurm (Mainz)

Solar neutrino spectroscopy

Solar neutrino oscillations: MSW-LMA

Solar neutrino oscillations are observed via v_e survival probability:

\rightarrow Three distinctive regions:

vacuum oscillations, transition region, matter-dominated oscillations

Solar v experiments: Observational windows

- Water Cherenkov → directionality, high threshold
- Liquid Scintillator → sub-MeV threshold, lower target mass

Spectroscopic measurement of P_{ee}(E)

 v_e flux measurement of spectral components allows to map out $P_{ee}(E)$:

sub-MeV region: Borexino >3MeV: SNO+Super-K pep pp 0.6 0.5 0.4 0.3 0.2 0.1 0<u>-</u>, 10^{-,} 10 1 neutrino energy E [MeV]

IG

BOREXINO detector layout

BOREXINO detector specifications

- Solar neutrino detection elastic ve-scattering
- Energy resolution

 ~500 p.e. per MeV
 → ΔE/E ~ 5% @ 1 MeV
- Energy threshold instrumental: ~50 keV analysis: ~150 keV
- Spatial reconstruction from photon time-of-flight

 Δx ~ 10 cm @ 1 MeV

 fiducial volume cut

JGU

Background reduction

Solar neutrino rates from spectral fit

JGU

BOREXINO low-energy results

Michael Wurm

IG

SNO and Super-Kamiokande

SK-IV electron recoil spectrum

ES data spectrum divided by SSM predicted shape for ⁸B-v's \rightarrow sensitive to P_{ee}(E)

SK-IV electron recoil spectrum

ES data spectrum divided by SSM predicted shape for ⁸B-v's \rightarrow sensitive to P_{ee}(E)

Current status of P_{ee}(E) from solar data

 \rightarrow full agreement with basic MSW-LMA scenario

JGU

Results on solar mixing parameters (1)

 \rightarrow oscillation fit driven by P_{ee} measurement of high-energy ⁸B neutrinos

Michael Wurm

Results on solar mixing parameters (2)

→ Solar results still dominate θ_{12} , KamLAND results Δm^2_{21}

- → Solar data: mixing parameters still dominated by SK+SNO
- → +KamLAND: tension in the best-fit value for Δm_{21}^2 : 5x10⁻⁵ vs. 7x10⁻⁵ eV²

Solar neutrino spectroscopy

Motivations to improve on P_{ee}(E)

- Resolve Δm_{21}^2 inconsistency between solar and KamLAND data
- Better constrain P_{ee}(E) in transition region

Motivations to improve on P_{ee}(E)

- Resolve Δm_{21}^2 inconsistency between solar and KamLAND data
- Better constrain $P_{ee}(E)$ in transition region \rightarrow sensitivity to new physics?

How to improve?

- More accurate results on low-E data Borexino Phase-2 data (4++ years)
 ultra-low background conditions
 - efforts to reduce convection in target
- Day/night modulation in ⁸B-v rate current SK data shows evidence
 → provides sensitivity to ∆m²₂₁
- Lower threshold on ⁸B neutrinos in large liquid scintillator detectors
 elastic scattering data to 2 MeV?
- Utilize Charged-Current detection for direct measurement of v energy, e.g. via ¹³C or isotope loading (⁷Li etc.)
 → water-based scintillator talk by Bob Svoboda

Borexino purification campaign (2010-12)

JGU

Borexino radiopurity in Phase II (pp-v)

Michael Wurm

JGU

New thermal insulation for Borexino

\rightarrow stabilize temperature gradient to stop convection \rightarrow BG stabilization (CNO/pep)

How to improve?

- More accurate results on low-E data Borexino Phase-2 data (4++ years) ultra-low background conditions П
 - efforts to reduce convection in target
- Day/night modulation in ⁸B-v rate current SK data shows evidence \rightarrow provides sensitivity to Δm_{21}^2
- Lower threshold on ⁸B neutrinos in large liquid scintillator detectors elastic scattering data to 2 MeV?
- **Utilize Charged-Current detection** for direct measurement of v energy, e.g. via ¹³C or isotope loading (⁷Li etc.) → water-based scintillator talk by Bob Svoboda

pp

pep

⁸R

⁷Be

0.9

0.8

0.7

0.6

0.5

→ v_e)

⁸B day/night-modulation and Δm_{21}^2

MSW-LMA Day-Night-effect

predicts re-generation of ⁸B **electron** v's when crossing the Earth matter potential

\rightarrow size of effect depends on value of Δm^2_{21}

- → New SK-IV data
 - first evidence (3σ)
 for non-zero effect:

 $A_{DN} = (-3.6 \pm 1.6 \pm 0.6) \%$

 amplitude of asymmetry favors lower solar ∆m²₂₁ over KamLAND value

How to improve?

- More accurate results on low-E data Borexino Phase-2 data (4++ years)
 ultra-low background conditions
 - efforts to reduce convection in target
- Day/night modulation in ⁸B-v rate current SK data shows evidence
 → provides sensitivity to ∆m²₂₁
- Lower threshold on ⁸B neutrinos in large liquid scintillator detectors
 → elastic scattering data to 2 MeV?
- Utilize Charged-Current detection for direct measurement of v energy,
 e.g. via ¹³C or isotope loading (⁷Li etc.)
 → water-based scintillator talk by Bob Svoboda

Low-threshold analyses of ⁸B neutrinos

⁸B electron recoil (ES) spectra of SK-IV, SNO and Borexino:

Michael Wurm

Solar neutrino spectroscopy

How to improve?

- More accurate results on low-E data Borexino Phase-2 data (4++ years)
 ultra-low background conditions
 - efforts to reduce convection in target
- Day/night modulation in ⁸B-v rate current SK data shows evidence
 → provides sensitivity to ∆m²₂₁
- Lower threshold on ⁸B neutrinos in large liquid scintillator detectors
 → elastic scattering data to 2 MeV?
- Utilize Charged-Current detection for direct measurement of v energy, e.g. via ¹³C or isotope loading (⁷Li etc.)
 → water-based scintillator talk by Bob Svoboda

Conclusions

- Solar neutrinos played important role in discovery of oscillations
- MSW-LMA vacuum and matter regions well understood, but mild tension with KamLAND data
- New oscillation/neutrino physics might wait in the transition region!
 Several access ways:
 - Iow-threshold (CC?) and day/night effect in ⁸B neutrinos
 - pep-neutrino line
- Running detectors (Borexino, SK) are still able to contribute
- New detectors upcoming: SNO+, JUNO, ...

Many new ideas:

- doped/directional scintillators: LENS, THEIA ...
- noble liquids: CLEAN (LNe), DARWIN (LXe), Argo (LAr) ...

Thank you!

Backup slides

New result on θ_{13}

CC detection of ⁸B on ¹³C

