Atmospheric Neutrino Oscillation

~ Review of Recent Progress and Future Prospect ~

Kimihiro OKUMURA (ICRR. Univ. of Tokyo) okumura@icrr.u-tokyo.ac.jp

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN16) Nov. 3-5, IHEP

Atmospheric Neutrinos

• Spectra modified by neutrino oscillation below O(10) GeV

•

•

•

Muon Neutrino Oscillation

- Large deficits of muon neutrino are observed in upward-going events and at $L/E \sim 230 \text{ km/GeV}$
- Pathlength ranges from O(10) km to O(10000) km depending on zenith angle
- Muon neutrino oscillation driven by θ_{23} is dominant channel in atmospheric v:

$$P_{3\nu}(\nu_{\mu} \to \nu_{\mu}) \approx 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}\left(1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}\right)\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$

Neutrino Oscillation

 $U_{\rm PMNS} =$

- $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $\begin{array}{c} \text{Atmospheric, LBL} \\ \Delta m_{32}^2 \simeq 2.4 \times 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.4 \sim 0.6 \\ \end{array} \begin{array}{c} \text{Reactor, LBL} \\ \sin^2 \theta_{13} \simeq 0.021 \\ \sin^2 \theta_{12} \simeq 0.30 \\ \end{array}$
- Standard 3-flavor oscillation framework are consistent with atmospheric, solar, reactor, accelerator results

- However, still some pieces of neutrino mixing are missing:
 - Mass hierarchy (MH): Normal ($\Delta m_{32} > 0$) or Inverted ($\Delta m_{32}^2 < 0$)
 - Leptonic CP phase (δ_{CP}), θ_{23} octant
- Additional verification of 3-flavor oscillation framework:
 - Sterile neutrino
 - Tau appearance from $\nu\mu \rightarrow \nu\tau$ oscillation
- These are explorable with atmospheric neutrinos

Sub-Dominant Effects in $v_{\mu} \rightarrow v_{e}$

Non-zero θ 13 and other oscillation parameters cause sub-dominant effect:

(1) solar term oscillation

- (2) Interference
- (3) Resonance

- $\nu_{\mu} \rightarrow \nu_{e}$ resonance is caused by enhancement of θ_{13} mixing by MSW mechanism
- v_e is affected with forward-scattering potential $(A_{cc}=\pm 2\sqrt{2}G_F E_v n_e)$ when propagating inside Earth
- Resonance occurs in 2-10 GeV

Resonance and MH

• Status of MH and $\nu / \bar{\nu}$ flips sign of Δm^2 and A_{cc} : NM \rightarrow IH ($\Delta m^2 \rightarrow -\Delta m^2$) $\nu \rightarrow \bar{\nu}$ ($A_{cc} \rightarrow -A_{cc}$)

	V	\overline{v}
Normal	enhanced (resonance)	surpressed
Inverted	surpressed	enhanced (resonance)

- Matter effect is also seen in $\nu_{\mu} \rightarrow \nu_{\mu}$ channel
- resonance condition is similar to $\nu_{\mu} \rightarrow \nu_{e}$

Effect of δ_{CP} phase and θ_{23} octant

Recent Progress in Atmospheric Neutrino Oscillation

Super-Kamiokande

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- 50 kton volume (fiducial 22.5 kton)
- 11129 20" PMTs in inner detector (ID) for Cherenkov ring imaging
- 1885 8" PMTs for outer detector (OD)

Phase	Period	# of PMTs	
SK-I	1996.4 ~ 2001.7	11146 (40%)	
SK-II	2002.10 ~ 2005.10	5182 (20%)	
SK-III	2006.7 ~ 2008.8	11129 (40%)	
SK-IV	2008.9 ~		

Super-K Updated Data

Data set

- SK-I, II, III, IV: 0.33 Mtyr
- 19 sub-samples
- statistical separations btwn ν and $\bar{\nu}$ for MH

Analysis updates

- NEUT update
- Improved calibration
- Systematics

Perform fit by varying

- θ_{23} , Δm_{32}^2 , δ_{CP} , and MH
- θ_{13} fixed to reactor

SK Only Parameter Determination

- SK only (θ_{13} fixed): $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -4.3$ (-3.1 expected)
- Under IH hypothesis, the probability to obtain $\Delta \chi^2$ of -4.3 or less is 0.031 ($\sin^2 \theta_{23} = 0.6$) and 0.007 ($\sin^2 \theta_{23} = 0.4$). Under NH hypothesis, the probability is 0.45 ($\sin^2 \theta_{23} = 0.6$).

SK+T2K ν_{μ} , ν_{e} Parameter Determination

- Introduce additional constraint by publicly available T2K info. Not joint fit.
- SK+T2K (θ_{13} fixed): $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -5.2$ (-3.8 exp. for SK best, -3.1 for combined best)
- Under IH hypothesis, the probability to obtain $\Delta \chi^2$ of -5.2 or less is 0.024 ($\sin^2 \theta_{23} = 0.6$) and 0.001 ($\sin^2 \theta_{23} = 0.4$). NH: 0.43 ($\sin^2 \theta_{23} = 0.6$)

Tau Appearance Analysis

- Detection of tau appearance induced by ν_μ→ν_τ oscillation is critical component of verifying 3-flavor mixing
- Expected rate: ~1 event per kt yr at Super-K due to production threshold
- Search for hadronic modes of tau decay (branching ratio: 65%)
- Utilize Neural Network (NN) method to discriminate tau signal from BG

Tau Updated Result

• Perform 2-D un-binned fit with tau signal and BG PDFs :

 $N^{\rm BG}_{ij} + \alpha \times N^{\rm Signal}_{ij}$

- Signal is expected in upward direction and large NN output
- Introduce variation φf syst. error in fit, and θ_{23} , θ_{13} , Δm uncertainties are taken into account

- Tau Signal PDF
- Fit result: $\alpha = 1.47 \pm 0.32$ 4.6σ (3.3 σ expected)
- Signal excess becomes more evident, and significance increased

Sterile Analysis in Atmospheric

- Several supporting evidence of sterile neutrino from SBL
- Indicating sterile mass of $\Delta m^2 > 0.1 eV$

- Possible to probe sterile oscillation with atmospheric neutrinos
- Super-K gave constraint on sterile mixing parameters in 3+1 model $(|U_{\mu4}|^2, |U_{\tau4}|^2)$ for sterile mass of $\Delta m^2 > 0.1 eV^2$
 - Phy. Rev. D91, 052019 (2015)

New Sterile Search by IceCube

- IceCube performed searches for sterile neutrinos with Δm^2 between 0.1 and 10 eV² with help of matter effect
- Sterile has different forward-scattering potential from active ν in matter, and similar resonance to $\nu_{\mu} \rightarrow \nu_{e}$ could occur in 320 GeV - 20 TeV depending on sterile Δm^{2}
- This resonant oscillation would produce distinctive signature in ν_{μ} energy spectrum
- Resonance appears either for ν or $\bar{\nu}$ depending on sterile mass hierarchy

IceCube Constraint on Sterile

- No significant distortions were seen in muon neutrino spectrum
- Δm -dependent constraint on θ_{24} is obtained assuming no other sterile mixing parameters
- Reject allowed region indicated by 3+1 sterile model
 - Phys. Rev. Lett. 117 071801 (2016)
 - See also talk by J-P Yanez

Future Prospect

See also Hyper-Kamiokande Talk by T. Feusels, KEK Preprint 2016-21 DUNE Talk by J. Bian, arXiv:1512.06148 **INO/ICAL** Talk by N. Majumdar, arXiv:1505.07380 IceCube/PINGU Talk by J-P Yanez, arXiv:1607.02671 KM3NeT/ORCA Talk by M. Circella, arXiv:1601.07459

Hyper-K & DUNE

- Hyper-Kamiokande is next generation water Cherenkov detector
- Compared to Super-K, ~25 times atmospheric neutrino rate is expected with 560 kton fiducial volume

- DUNE is liquid argon based time projection chamber
- Though fiducial mass is relatively small, high resolution imaging would offer possibilities to discriminate vand $\bar{\nu}$

Hyper-K & DUNE Sensitivities

- Hyper-K expects >3 σ sensitivity for both MH cases for $\sin^2 \theta_{23}$ >0.45 with 10yr data (2.6Mtonyr)
- Possible to discriminate θ_{23} octant at >3 σ for $|\theta_{23}$ -45|>4deg

• Despite smaller mass, Dune would have comparable MH sensitivity to Hyper-K due to high detector resolution

INO / ICAL

- Magnetized Iron Calorimeter (ICAL) composed of resistive plate chamber (RPC) in India
 - 48x16x14.5 m, 50 kton mass
- v and \bar{v} discrimination by muon charge
- Expect MH determination at 2.2σ using 10 yr data (3σ if hadron information is introduced)

IceCube/PINGU, KM3NeT/ORCA

- PINGU is inner detector configuration of IceCube/ DeepCore at South pole
 - 6 Mton effective mass
- Lower threshold below 10 GeV with 22 m spacing of string
- Expect ~60,000 atm. ν event per year

- ORCA is low energy branch of KM3NeT in Mediterranean Sea
- Dense array of multi-PMT digital optical modules (DOMs)

(E) = 0 = 0 (E) = 0

	ARCA	ORCA
Location	Italy	France
String dist. [m]	90	20
DOM spacing [m]	36	6
Volume [10 ⁶ m ³]	~500	~3.8

PINGU / ORCA Sensitivities

- Both experiments have similar sensitivity
 - Could reach 3σ for MH within allowed θ_{23} range
- Precise determination of tau appearance is expected for PINGU

Conclusion

- Measurement of atmospheric neutrino oscillation are attractive and effective method to fully understand neutrino oscillation paradigm
- There are several progresses in on-going experiments
 - Significances of mass hierarchy and tau appearance are strengthened in Super-K
 - New sterile constraint is given by IceCube in $\Delta m_{41}^2 > \sim 0.1 \text{ eV}^2$
- Future projects have enough sensitivities of mass hierarchy and θ_{23} octant determinations

