The KN3NeT Digital Optical Module

NNN16 IHEP,Beijing

Ronald Bruijn Universiteit van Amsterdam/Nikhef

Large Volume Neutrino Telescopes

Cherenkov light from the charged products of neutrino interactions in sea-water are detected by a sparse array of photo-multiplier tubes

Two *general* event types:

- Tracks Charged current (CC) v_{μ} and v_{τ} interactions
- Showers Neutral current v interaction
 - v_e CC electromagnetic shower
 - Vertex of CC interaction
 - τ decay shower

ARCA & ORCA

High Energy Neutrino Astronomy: ARCA: <u>A</u>stroparticle <u>R</u>esearch with <u>C</u>osmics in the <u>A</u>byss

Large Detector: ~1 km³ total Sparsely instrumented: 36 m vertical spacing, 95 m horizontal TeV-PeV Energies Astrophysical Neutrinos

Same technology & layout, dimensions scaled

Neutrino Physics: ORCA: <u>O</u>scillations <u>R</u>esearch with <u>C</u>osmics in the <u>A</u>byss

'Smaller' detector: 5.7 Mton More densely instrumented: 9m vertical spacing, 20m horizontal GeV energies Atmospheric neutrinos

KM3NeT Design

Detection Units:

18 optical modules per vertical string ~36m or 9m between optical modules Lowest optical module ~100m or 40m above seabe Two Dyneema[®] ropes Backbone: 2 copper conductors; 18 fibres (+spares Break out of cable at each optical module Base module with DWDM at anchor Cable for connection to seafloor network *Cost saving design*

Infrastructure:

Detector building blocks of 115 detection units Sea-bed infrastructure (facility for long term high-bandwidth connection for sea-science, biology etc.) Optical data transmission All-data-to-shore

Filtering/Trigger on-shore in computer farm

Multi-PMT Concept

Segmented photocathode : 31 3" PMTs in a 17" sphere (equivalent to 3 10" PMTs)

+ All front-end and digitization electronics, slow control sensors and supporting mechanics

KM3NeT Digital Optical Module (DOM)

Advantages

- Large photocathode area
- Directional Sensitivity
 - Photon Counting

 (1 vs 2 vs ... photons,
 background suppression)
 - Less overhead
 - Cost effective

Minimal glass penetrations

PMTs

Main PMT Specifications:

➤ Timing	≤2ns (RMS)
≻ QE@ 404 nm	≥23%
≻ QE@470 nm	≥18%
Collection efficiency	≥90%
Photon counting purity	100% (by hits, ≤
Dark Count (0.3 p.e.)	< 2 kHz
> Price/cm2	≤10″ PMT

Suppliers:

7

- Hamamatsu (R12199)
 - (currently used in KM3NeT phase-1 detector)
- ETEL (D792)
- HZC (XP53B20, development ongoing)
- Melz

PMT Bases

PMT base – KM3NeT design

- HV generation <u>on the base</u>
 - Cockroft-Walton circuit
 - Input 3.3 V
 - Output to -1400 V
 - Controlled by custom ASIC : Coco
- <u>Time-over-threshold</u> readout (ToT)
 - Custom ASIC: PROMis
 - Pre-amplifier
 - Digitization on the base
 - LVDS signal output
- LOW power (140 mW for 31 PMTs)
- HV and threshold adjustable over I2C
- Each base has a unique electronic identifier
- 3.3 V, I2C, LVDS over thin kapton cable
- Adjustable for different PMT manufacturers

Negative HV on photo-cathode

Gain: 3 *10⁶

HV tuned to set ToT to a specific value at fixed threshold

Reflector rings

Reflector rings around PMTs increase light yield with 20-40 % and improve directionality

Aluminium coated with silver and protective layers

DAQ/Electronics

Control from shore

(Slow control, DAQ pipeline, White Rabbit, other sensors) Implements software state machine

UART

Serial terminal Tunneled over ethernet

Compass/tiltmeter

Temperature/Humidity

Led Flasher

DAQ – Datastream from DOM

Digitized LVDS pulses are converted to t0 (leading edge) and ToT (width of pulse) by TDCs

Continuous datastream from PMTs is converted into 'hits' : t0, ToT and PMT ID – 6 bytes

All hits for a specific duration (100 ms) are collected in 'frames'

Frames are formatted into IP/UDP packets and sent over 1Gb optical link

On- shore switching infrastructure and farm collects frames for all DOMs and assembles timeslices (100 ms snapshot)

Trigger farm looks for correlated hits.

Interesting timeslices are stored

Selected Mechanics

Cooling structure (mechanical support and passive cooling)

3D printed support structure (SLS)

Barrier for optical gel

٠

٠

DOM integration

With 1.5 FTE : 1 DOM takes 3 days but 5 take a week (waiting for glue, gel etc.)

Integration, functional test, integration, acceptance test.

All components have their own identification (QR code) with associated database entry (e.g. PMT calibration)

QA/QC system tracks components Integrated in DOMs.

K40 time calibration

All PMT pairs

Information from k40 decay :

- time offset
- efficiency
- time spread

Understanding efficiencies

Coincidences give insight into relative efficiencies

Vertical bands indicate influence of DOM mechanics

Photons are blocked

Photon counting and direction

Photon counting

(muons cause higher multiplicity coincidences)

(photons from muons come from above)

(data in these plots is from prototypes PPM-DOM (Eur. Phys. J. C (2014) 74:3056) and PPM-DU (Eur. Phys. J. C76 (2016) no.2, 54)

Inter-DOM calibration

Calibration between DOMs:

- Laser calibration in lab •
- Led-flashers ۲
- Atmospheric muons •

KM3NeT First DU Preliminary DOM1 nanobeacon visibility

KM3NeT preliminary Inter-DOM Time calibration of DU-2 5 calibration [ns] 4 3 1 Nanobeacon Atmospheric muons on-shore ᅊ Difference to 3

2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9 11-1012-1113-1214-1315-1416-1517-1618-17

DOM pair

(Data from ARCA – DU1 & 2)

-5È

Reconstructed event

Summary

- The KM3NeT Digital Optical Module maximizes physics potential of the ARCA and ORCA detectors
 - It provides:
 - Nanosecond-timing Photon counting
 - Directional sensitivity
 - Design allows in-situ calibration
 - The design has been validated by prototypes and the first detection units