China Jinping Underground Laboratory and Jinping Neutrino Experiment

Zhe Wang Tsinghua University (for the research group)

Nov. 5, 2016 at NNN'16, IHEP, China

Location of CJPL

Travel:

1. To Xichang airport by air (from Beijing, Shanghai, etc.)

1000km

2. To Jinping laboratory by car (2 hours)

CJPL-I and Dark Matter Exp.

Design of CJPL-II

	CJPL-I	CjPL-II
Rock Work	4000 m ³	131000m ³

CJPL Current status

May 2016

3D Laser Scan

Ideal Low Bkg. Laboratory

→Overburden 2400 m←

Jinping Neutrino Experiment

Or spherical detector

- TWO detectors
- Total fiducial mass 2000 tons (solar), 3000 tons (geo, supernova)
- Liquid scintillator or slow liquid scintillator
- ~20 m for height and diameter for each
- Light Yield>500 PE/MeV

Solar Neutrinos

Simulation study with Borexino and Jinping assumptions. Various target mass and resolutions studied.

Solar Neutrinos Oscillation

Electron Energy MeV

Discover CNO neutrino Address metallicity problem

Above 15 MK CN fuel the stars

- Precise measure of all components
- Expected to discover CN v
- O-15 precision 10%
- Direct proof for metallicity problem

Geoneutrinos

- U geoneutrino spectrum
- Th geoneutrino spectrum
- Th/U ratio ~ 10%
- Geo-reactor

- Address mantel contribution
- Geoneutrino flux prediction at Jinping Sci. Rep. 6, 33034 (2016)

Supernova Relic Neutrinos

1. Liquid scintillator is fine with solar and geo-neutrino detection 2. Slow LS will strengthen solar nu detection 3. Slow LS is fantastic for SRN

A 20-kton exposure with LAB may find the first golden SRN candidate.

ArXiv:1607.01671

Rock Damage Zone

Damage zone shape

Rock simulation study under Jinping situation.
Agree with Exp.

Low background stainless steel

Atom number

Results

- 1. Co60 ~1/10 of market sample
- 2. Tl208 ~1/10
- 3. almost all impurity ~1/10
- 4. K40 lowest
- 5. U, Th need more measurement

Mechanical Property of Acrylic

tensile-strength

impact ductility

fracture toughness

These measurements played a key role in the 1-ton prototype design.

Improved Reflector (Winston Cone)

Improved design

Pro: 98% acceptance (20% more)

Con: 30% more PMTs

20 L Experiment
Measure Cherenkov and scintillation light time structure and light yield

LAB test and other liquid

Waveforms of top and bottom PMTs in LAB

Jinping Simulation & Analysis Package (JSAP)

JSAP

- 1. Comprehensive & Simple & Efficient
- 2. Handle different geometry setup
- 3. Waveform simulation
- 4. Free flow style simulation
- 5. ...

Calorimeter Function, more physical Replacing Crystal Ball

	Calorimeter	Crystal ball	
Fit range	Best fit	Same range	Best fit
Liquid scintillator Peak accu. Resolution accu. Peak area accu. \$\chi^2/\text{NDF}\$ Calibration source Peak accu. Resolution accu. Peak area accu. \$\chi^2/\text{NDF}\$ CsI crystal array Peak accu. Resolution accu. Resolution accu. Peak area accu.	- 0.042% 0.044% - 0.59% 119/118 0.0054% 0.22% - 0.095% 59/35 - 0.18% 0.15% 17%	-0.80% 4.8% 22% 9027/120 -0.40% 5.8% 18% 5197/35 -1.2% 7.3% 128%	-0.53% 1.9% 19% 115/47 -0.25% 2.6% 14% 81/15 -1.1% 5.5% 124%
χ ² /NDF	378/395	8383/395	1411/176

1-ton Prototype

- 1. Detector design and fabrication
- 2. Measure fast neutron background
- 3. Test detection material: water, LS, and slow LS
- 4. A low bkg. facility

Schedule:

- 1. Deliver the main body in 2016/12
- 2. Full assembly by 2017/03
- 3. Take data in 2017-2018

Fabrication

2m

A 10~100 ton Prototype

- a) Verify detector design, fabrication, and operation
- b) Test neutrino detection target material
- c) Low background target material
- d) Ready for a kilo-ton detector

Conclusion

- ☐ Jinping Neutrino Experiment is the next step to explore the nature
 - solar neutrino upturn constrained
 - discover CNO which fuels the stars
 - O-15 at 10%, direct evidence for metallcity
 - Th/U ratio, Th, U geo-nu spectra
 - slow LS -> golden SRN candidate
- □ Rock, SST, Acrylic, target material (Yalong river water) are under investigation
- ☐ Jinping simulation is in progress. Replace Crystal Ball function.
- □ 20-L test stand is in use
- ☐ 1-ton prototype is in progress
- □ 10~100 ton prototype is in plan

Thank you

Especially thanks the information given by CJPL (Zhi Zeng)

More detail of the Jinping Neutrino Experiment can be found at http://jinping.hep.tsinghua.edu.cn